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ABSTRACT

We consider free and forced harmonic vibrations of a thin elastic shell filled

with or immersed into fluid. We construct the asymptotics of the eigenfrequencies

and scattering frequencies in the problems of free vibrations, and of the solu-
tions of non-homogeneous problems, using the relative shell thickness as the main
asymptotic parameter.

0. Introduction

The main object studied in this paper is the problem of harmonic vibrations (free
or forced) of a thin elastic shell which is either filled with an inviscid compressible
fluid (the interior problem) or is immersed into an unbounded inviscid compressible
fluid (the exterior problem).

We give an extended review of the results obtained in these problems by the
authors and their collaborators during the last fifteen years. These results have
been mostly published in Russia and are not widely available in the West.

The vibrating shell-fluid system is characterized by many parameters: the char-
acteristic linear size of the shell R∗, Young’s modulus E∗, the density ρ∗s and Pois-
son’s ratio ν of the material of the shell, shell thickness h∗, fluid density ρ∗fl, sound
velocity in the fluid c∗fl, and frequency of vibrations ω∗. (We denote all dimen-
sional parameters by an asterisk; we shall switch to dimensionless parameters in
Section 2.)

Our approach is asymptotic, with the relative shell thickness h = h∗/R∗ playing
the rôle of the main asymptotic parameter. We extensively use modern mathemati-
cal techniques such as the theory pseudodifferential operators and advanced results
in spectral asymptotics. Most of our results (but not all) are rigorously proved (for
example, we show that the formal asymptotic expansions indeed converge asymp-
totically to the exact solutions), however we do not present the details of the proofs
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here in order to simplify matters; a rigorous mathematical analysis of these prob-
lems can be found in the works by A. G. Aslanyan, A. L. Goldenveizer,

M. Levitin, V. B. Lidskii, D. Vassiliev et. al. 2,4−6,8,9,13−16,19−23.

1. Basic equations

1.1. Coordinate system and dimensionless parameters
Let us denote by Γ the closed bounded infinitely smooth middle surface of our

shell. The surface Γ divides R3 into two parts: a bounded domain Gi (interior
of the shell) and an unbounded domain Ge (exterior of the shell). In the interior
problem the domain Gi is occupied by fluid and the domain Ge is occupied by
vacuum, whereas in the exterior problem the domain Gi is occupied by vacuum and
the domain Ge is occupied by fluid.

We denote by x = x∗/R∗ = (x1, x2, x3) the dimensionless Cartesian coordinates
in R3, and by α = α∗/R∗ = (α1, α2) the dimensionless local coordinates on Γ
associated with the lines of curvature. By n = n∗/R∗ we denote the unit normal
vector to Γ pointing inside Ge; we assume that the main trihedron e1, e2,n is
chosen in such a way that the basis vectors form the right triple. Let A1(α), A2(α)
denote the (dimensionless) coefficients of the first quadratic form of the surface Γ,
dS2 = A1

2dα1
2 + A2

2dα2
2, and let R−1

1 (α), R−1
2 (α) denote the (dimensionless)

curvatures of the surface Γ; the signs of the curvatures are chosen in such a way
that they are positive for a convex shell. The surface element of Γ is computed as
dS = A1A2dα1dα2, and the volume element is denoted dV = dx1dx2dx3.

Further on we shall use the following dimensionless parameters characterizing
the shell-fluid system:

h := h∗/R∗ — relative shell thickness,

ρ := ρ∗fl/ρ∗s — relative density,

c := c∗fl/
√

E∗/ρ∗s — relative sound velocity,

ω := ω∗R∗/c∗s — dimensionless frequency.

1.2. Shell equations in vacuum
Let us first consider the vibrations of a shell in vacuum. We shall describe the

shell deformations by the (dimensionless) vector of shell displacements

u(α) ≡ u∗/R∗ ≡ (u1, u2, u3) ≡ u1e1 + u2e2 + u3n ;

it is important to note that u3 is the displacement in the normal direction.
Suppose that the vibrations of the shell are excited by a given exterior force

with amplitude

g(α) ≡ g∗/E∗ ≡ (g1, g2, g3) ≡ g1e1 + g2e2 + g3n .



The vector-function g is an arbitrary function from L2(Γ), i.e., it is not necessarily
smooth. Note that there are methods which allow to consider extremely non-smooth
loads, for example distributions from the class D′(Γ).

We always assume the time dependence of the shell displacements and the ex-
terior force in the form e−iωt; we omit this time factor further on.

After the separation of the time factor, the vibrations of a shell in vacuum are
described by the system of three partial differential equations on Γ:

h
3∑

i=1

Lijui = hω2 uj + gj , j = 1, 2, 3 . (1.1)

The Lij are the linear differential operators of shell theory which have the form

Lij =
h2

12
nij + `ij , i, j = 1, 2, 3 . (1.2)

Here nij and `ij are the moment and membrane operators respectively. We recall
explicit expressions for `ij from Goldenveizer–Lidskii–Tovstik

3:

`ii = − 1
1 − ν2

1
Ai

∂

∂αi

1
AiAj

∂

∂αi
Aj − 1

2(1 + ν)
1

Aj

∂

∂αj

1
AiAj

∂

∂αj
Ai

− 1
1 + ν

Ri
−1Rj

−1 , i = 1, 2, 3 ,

`ij = − 1
1 − ν2

1
Ai

∂

∂αi

1
AiAj

∂

∂αj
Ai +

1
2(1 + ν)

1
Aj

∂

∂αj

1
AjAi

∂

∂αi
Aj , i, j = 1, 2 ,

`i3 = − 1
1 − ν2

1
Ai

∂

∂αi

(
Ri

−1 + Rj
−1

)
+

1
1 + ν

1
AiRj

∂

∂αi
, i = 1, 2 ,

`3i =
1

1 − ν2

1
AiAj

(
Ri

−1 + Rj
−1

) ∂

∂αi
Aj − 1

1 + ν

1
AiAj

∂

∂αi

Aj

Rj
, i = 1, 2 ,

`33 =
1
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(
R1

−2 + 2νR1
−1R2
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.

The operators nij depend on the choice of the particular variant of shell theory.
We assume that our nij satisfy the following natural conditions:

ordnij 6 2 for i, j 6 2 ,

ordnij 6 3 for i + j < 6 ,

nij =
1

1 − ν2
∆2

Γ + ñ33 , ord ñ33 6 2 ,

where ord stands for the order of the operator and ∆Γ denotes the surface Laplacian
on Γ. We also assume that the matrix differential operator

(
npq

)3

i,j=1
is formally



self-adjoint and non-negative with respect to the standard L2(Γ)-inner product on
vector-functions.

The simplest possible choice of the moment operators nij is

nij = 0 for i + j < 6 , ñ33 = 0 . (1.3)

This choice corresponds to the so-called technical shell theory; without loss of gen-
erality we shall assume this variant throughout the paper.

1.3. Fluid equations
We shall describe the motion of an ideal fluid (occupying either Gi or Ge) by

the potential of displacements

ψ(x) = ψ∗(x∗/R∗)/R∗ .

The fluid velocity is easily expressed in terms of ψ:

v(x) = −iω gradψ(x)

(gradψ is the vector of fluid displacements, and the additional factor −iω results
from the differentiation with respect to time). It is well-known that the vibrations
of fluid are governed by the Helmholtz equation

∆ψ +
ω2

c2
ψ = 0 . (1.4)

In the case of the exterior problem the potential ψ should satisfy the additional
radiation condition at infinity. This condition has the simplest form for real values
of ω (Sommerfeld radiation condition):

∂ψ

∂r
− iω

c
ψ = o

(
r−1

)
as r → ∞ , (1.5)

r =
√

x2
1 + x2

2 + x2
3. We discuss the radiation condition for non-real ω in Section 4.

In Section 7 we shall briefly discuss the equations of a viscous compressible fluid
and the effects of viscosity on shell–fluid vibrations.

1.3. Equations for a shell contacting fluid
For a shell interacting with fluid we shall modify Eqs. (1.1) in order to take

into account the presence of fluid. The equations now can be written in a matrix
form as

hLu = hω2u + g ± ρω2ψ|Γn , (1.6±)

where the plus sign corresponds to the interior problem and the minus sign corre-
sponds to the exterior problem. The additional term ±ρω2ψ|Γn which appears in



Eqs. (1.6±) by comparison with Eqs. (1.1) gives the pressure of the fluid upon the
shell.

In addition, the fluid potential should satisfy the non-penetration condition on
Γ

∂ψ

∂n

∣∣∣∣
Γ

= u3 (1.7)

( ∂ψ
∂n

∣∣∣
Γ

is the derivative of ψ with respect to the exterior normal to Γ).
Now, we are able to state our four main problems.
• Free vibrations, interior problem – Eqs. (1.4) in Gi, (1.6+) (g = 0)

and (1.7) on Γ.
Find the eigenfrequencies ω such that the problem has a non-trivial solution
u, ψ.

• Forced vibrations, interior problem – Eqs. (1.4) in Gi, (1.6+) and (1.7)
on Γ.
Given ω > 0 and g(α), find the solution u, ψ.

• Free vibrations, exterior problem – Eqs. (1.4) and the radiation con-
dition in Ge, (1.6−) (g = 0) and (1.7) on Γ.
Find the resonance frequencies ω such that the problem has a non-trivial
solution u, ψ.

• Forced vibrations, exterior problem – Eqs. (1.4) and (1.5) in Ge, (1.6−)
and (1.7) on Γ.
Given ω > 0 and g(α), find the solution u, ψ.

In the next Sections we shall give rigorous mathematical statements of the above
problems, specifying the function classes and other conditions.

2. Mathematical statement and general properties of the interior prob-
lem

2.1. Mathematical statement of the interior problem
Let us consider the Hilbert space H of the quadruples of functions

f = (u1(α), u2(α), u3(α), ψ(x)) ;

we identify the elements of H which differ by the term (0, 0, 0, const ). (Sometimes
we shall write f = (u, ψ) for brevity.) We introduce the inner product on H by the
formula(

f (1), f (2)
)
H

= h

∫∫
Γ

u(1) · u(2) dS + ρ

∫∫∫
Gi

gradψ(1) · gradψ(2) dV (2.1)

(the bar denotes complex conjugation). This inner product and the corresponding
norm have a natural physical meaning: ‖f‖H = (f , f)H is a kinetic energy of the



vibrating shell–fluid system (up to the factor ω2/2). The Hilbert space H is easily
identified with the space L2(Γ) × H1(Gi).

Now, using (1.4), we can rewrite the interior problems as

Aif = λf +
1
h
F , (2.2)

where λ = ω2 is a new spectral parameter, the matrix 4× 4 differential operator Ai

is defined as

Ai =


L11 L12 L13 0
L21 L22 L23 0
L31 L32 L33 −ρc2

h Θ0∆
0 0 0 −c2∆

 , (2.3)

on quadruples satisfying the condition

Θ1ψ = u3 ; (2.4)

Θ0 and Θ1 are the operators mapping ψ(x) into ψ|Γ (α) and ∂ψ
∂n

∣∣∣
Γ

(α), respectively,

and F = (g1, g2, g3, 0).
Obviously, in case of the free vibrations one should set in (2.2) F = 0, and

consider the corresponding spectral problem.

2.2. Spectral properties of the operator Ai

We state the main properties of the operator Ai; detailed proofs can be found
in Aslanyan–Lidskii–Vassiliev

2.

Theorem 2.1. The operator Ai is symmetric; moreover, (Aif , f)H > 0.

Indeed, simple integration by parts with account of Eq. (2.4) gives

(
Aif (1), f (2)

)
H

= h

∫∫
Γ

Lu(1) · u(2) dS

+ ρc2

∫∫∫
Gi

∆ψ(1)∆ψ(2) dV .

Since the operator L is symmetric and non-negative, the same is true for Ai.

Theorem 2.2. The operator Ai is an essentially selfadjoint operator in H with a
compact resolvent (Ai + I)−1.

One of the most important corollaries of Theorems 2.1 and 2.2 is



Theorem 2.3. The operator Ai has a discrete spectrum consisting of positive eigen-
values λj, j = 1, 2, . . . , which have the only limit point +∞.

In physical terms, Theorem 2.3 implies that the spectrum of eigenfrequencies
ωj =

√
λj of the interior problem is discrete. (Note that due to the symmetry of

the problem −ωj are also eigenfrequencies; for definiteness we consider only the
half-plane Reω > 0 throughout the paper.)

2.3. Existence and uniqueness of the solution of the non-homogeneous problem
Another important corollary of Theorems 2.1 and 2.2 is

Theorem 2.4. Suppose that λ = ω2 does not coincide with any of the eigenvalues
λj. Then for any g(α) ∈ L2(Γ) the interior problem of forced vibrations (2.2)–(2.4)
has the unique solution (u(α), ψ(x)) such that u ∈ H2,2,4(Γ) and ψ ∈ H3(Gi).

3. Asymptotics of eigenfrequencies for the interior problem

In this Section we construct the asymptotics of eigenfrequencies for the interior
problem with respect to the main asymptotic parameter - the relative shell thickness
h ¿ 1. We assume that the relative density ρ and the relative sound velocity c are
of order ∼ h0. We work in the low frequency range ω ∼ 1. Our analysis starts with
the case of a shell of revolution which can be studied in a very detailed manner.

3.1. Decomposition of the spectrum into three series for a shell of revolution
Let us consider a shell of revolution Γ formed by the rotation of the curve

x1 = X(s), x2 = Y (s), 0 6 s 6 L, around the x2-axis, where X > 0, Y (L) > Y (0),
(X ′

s)
2 + (Y ′

s )2 = 1, and s denotes a variable arc length of a meridian. We choose
s and the angular coordinate ϕ as the coordinates α = (α1, α2) on the shell, and
α3 (a signed distance from a point to the shell; note that α3 is negative for points
in Gi) as the third coordinate in the vicinity of the shell. Then, the coefficients of
the first quadratic form of Γ are A1 = 1, A2 = X(s), and the principle curvatures
of the shell are R−1

1 = X ′
sY

′′
ss − Y ′

sX ′′
ss and R−1

2 = Y ′
s/X.

All the results of this Section are obtained for a (sufficiently small) fixed number
of waves along the parallel . More precisely, this means that we study the eigenforms
with the angular behaviour exp(imϕ), m ∼ 1, and separate this factor in the initial
equations.

One of the most important results in the asymptotic theory of shells containing
fluid is the following:

As h → +0, the eigenfrequencies of the interior problem for a shell of revo-
lution can be decomposed into three series:

• tangential, with the prevalence of the tangential components of the vector
of shell displacements u in the corresponding eigenform (u, ψ);



• fluid, with the prevalence of the fluid potential ψ in the corresponding eigen-
form (u, ψ);

• flexural, with the prevalence of the normal component of the vector of shell
displacements u in the corresponding eigenform (u, ψ).

In the above classification, the prevailing component of the eigenform f = (u, ψ)
is the one which gives the main asymptotic contribution in the kinetic energy
ω2

2 (f , f)H.

3.2. Asymptotic formulae for tangential and fluid eigenfrequencies for a shell of
revolution

The eigenfrequencies of the tangential series can be asymptotically found as the
eigenfrequencies ωtn

j of the auxiliary tangential problem(
`11 `12
`21 `22

)(
utn

1

utn
2

)
= ρ(ωtn)2

(
utn

1

utn
2

)
. (3.1)

The operator Ltn = (`ij)
2
i,j=1 appearing in the left-hand side of (3.1) is simply

the operator of the two-dimensional elasticity but written in the curvilinear metric of
the shell. This operator is elliptic, symmetric and non-negative, so the ω-spectrum
of the problem (3.1) is discrete and symmetric with respect to the origin. (Note
that ω = 0 is an eigenfrequency of the problem (3.1) only for a shell of revolution;
the multiplicity of this eigenfrequency is three for a sphere and one in all other
cases, and the corresponding eigenforms describe the rotation of a shell as a solid
body.) We enumerate the positive eigenfrequencies of (3.1) in increasing order with
account of multiplicity:

0 < ωtn
1 6 ωtn

2 6 . . . .

Then, for sufficiently small j, the ωtn
j give the eigenfrequencies of the tangential

series of the full shell–fluid system with accuracy O(h), h → +0.
The eigenfrequencies of the fluid series can be asymptotically found as the eigen-

frequencies ωfl
j of the auxiliary fluid problem

c2∆ψfl + ωflψ = 0 in Gi , ψ|Γ = 0 . (3.2)

The problem (3.2) is simply the Dirichlet problem for the Helmholtz equation,
and it is well-known that its ω-spectrum consists of real non-zero eigenfrequencies
and is symmetric with respect to zero. We enumerate the positive eigenfrequencies
of (3.2) in increasing order with account of multiplicity:

0 < ωfl
1 6 ωfl

2 6 . . . .

Then, for sufficiently small j, the ωfl
j give the eigenfrequencies of the fluid series of

the full shell–fluid system with accuracy O(h), h → +0.



Vassiliev
20 constructed simple iteration procedures which allow to obtain the

eigenfrequencies and corresponding eigenforms of the tangential and fluid series for
the full problem with arbitrary accuracy, starting from the eigenfrequencies and
eigenfunctions of (3.1) and (3.2). However, in most practical situations even the
initial approximations described above provide adequate results.

Note that the eigenfrequencies of both problems (3.1) and (3.2) are distributed
on the real axis quite sparsely, with relative density O(1). The vast majority of the
eigenfrequencies of the full problem belongs to a very dense flexural series which we
consider in the next subsection.

3.3. Asymptotic formulae for flexural eigenfrequencies for a shell of revolution
For a shell of revolution the eigenfrequencies ωfx

j can be asymptotically found
from the following equation:

1
π

L∫
0

k(s, ωfx
j , h) ds = j + |m| − 1

2
+ δ0m , (3.3)

where

δlm =
{

1 for m = l ,

0 for m 6= l ,

and k is the maximal real root of the six order algebraic equation

h3

12(1 − ν2)
k4 + hR2

−2(s) = h(ωfx
j )2 +

ρ(ωfx
j )2

k

(
1 +

R2
−1(s)
2k

)
. (3.4)

Here m ∼ 1 is the number of waves along the parallel, and j ∼ h−3/5 À 1 is the
sequential number of the flexural eigenfrequency ωfx

j .
The asymptotic equation (3.3) determines ωfx

j with accuracy O
(
j−2

)
; note that

ωfx
j+1 − ωfx

j ∼ j−1, so the asymptotics allows us to separate eigenfrequencies.

3.4. Asymptotic formulae for eigenfrequencies for a shell of an arbitrary shape
When Γ is not a shell of revolution our results are considerably less precise.

Instead of producing asymptotic formulae for the jth eigenfrequencies in all the
three series as we did for a shell of revolution, here we obtain a formula for the
counting function Nh(ω), which is defined as the number of eigenfrequencies less
than a given number ω.

As h → +0, we have

Nh(ω) =
1 + o(1)

8π2

∫
Γ

 2π∫
0

k2(s, ω, h, θ) dθ

 dS , (3.5)



where k is the maximal real root of the six order algebraic equation

h3

12(1 − ν2)
k4 + hK2(α1, α2, θ) = hω2 +

ρω2

k

(
1 +

K(α1, α2, θ)
2k

)
, (3.6)

K(α1, α2, θ) = R−1
1 (α1, α2) sin2 θ + R−1

2 (α1, α2) cos2 θ . (3.7)

The natural analogy between Eqs. (3.3)–(3.4) and (3.5)–(3.7) suggests that
we are in fact looking for the eigenfrequencies of the flexural series. Indeed, the
tangential and fluid eigenfrequencies occur so seldom in our frequency range that
their contributions into Nh(ω) are “lost” in the asymptotically negligible remainder
of (3.5). However, we can still find these eigenfrequencies in the generic situation
using the procedures of subsection 3.2.

The jth eigenfrequency ωfx
j of the flexural series can be asymptotically found

by inverting formula (3.5):

j = Nh(ωfx
j ) + 0 ∼ 1

8π2

∫
Γ

 2π∫
0

k2(s, ωfx
j , h, θ) dθ

 dS . (3.8)

In the generic situation the asymptotic equation given above determines ωfx
j with

accuracy o
(
j−1

)
(see Vassiliev

20 for details); note that ωfx
j+1 − ωfx

j ∼ j−2, so the
asymptotics does not allow us to separate eigenfrequencies, unlike the case of a shell
of revolution.

Note that rigorous mathematical proofs of the asymptotic formulae of this Sec-
tion required deep excurses into the modern theory of pseudodifferential opera-
tors and spectral asymptotics; the interested reader can find the proofs in Vassi-

liev
19−22.

4. Mathematical statement and general properties of the exterior prob-
lem

4.1. L2-spectrum of the exterior problem
As in the case of the interior problem we can write the exterior problem in the

operator form

Aef = λf +
1
h
F , (4.1)

where the matrix 4 × 4 differential operator Ae is defined as

Ae =


L11 L12 L13 0
L21 L22 L23 0
L31 L32 L33

ρc2

h Θ0∆
0 0 0 −c2∆

 , (4.2)



and differs from the operator Ai by the sign of the term ρc2

h Θ0∆ (cf . Eqs. (3.2)–
(3.3)), and the new spectral parameter λ and the right-hand side F are as in Sec-
tion 2. As before, the operator Ae acts on quadruples (u, ψ); of course the potential
ψ(x) is defined now in the exterior Ge of the shell.

Similarly to the interior problem we can introduce the Hilbert space

H =
{
f = (u(α), ψ(x)) : u ∈ L2(Γ), ψ ∈ H1

loc(Ge), gradψ ∈ L2(Ge)
}

with the scalar product(
f (1), f (2)

)
H

= h

∫∫
Γ

u(1) · u(2) dS + ρ

∫∫∫
Ge

gradψ(1) · gradψ(2) dV . (4.3)

Note that H1
loc(Ge) denotes a local Sobolev space; the introduction of such a space

is necessary because the integral
∫∫∫
Ge

|ψ|2 dV might be infinite. This does not cause

any difficulties since the potential ψ does not have a physical meaning itself, only its
gradient does. As before we identify the quadruples which differ by (0, 0, 0, const ).

We can first define the formally self-adjoint operator Ae using (4.2) on suffi-
ciently smooth elements of H satisfying the non-penetration condition (2.4) and
such that the support of ψ is compact, and then extend it to a non-negative self-
adjoint operator with some domain D(Ae) ⊂ H. A standard argument using Weyl’s
sequences shows that the λ-spectrum of the operator Ae constructed in this way
fills the half-line [0,+∞). Of course, the non-discreteness of the spectrum is due to
the unboundedness of the domain Ge.

4.2. Meromorphic continuation of the resolvent and scattering frequencies
The fact that the spectrum of the exterior problem considered as a spectral

problem for the operator Ae in the Hilbert space H is continuous and fills the half-
line [0,+∞) (or, in terms of frequency ω, the whole real axis (−∞,+∞)) is not
very informative from the mechanical point of view. This is due to two important
factors.

First, the choice of functions in H (or, more exactly, in the set D(Ae) which
is a dense subset of H) is too narrow: for example the functions ψ(x) 6≡ 0 which
satisfy the Helmholtz equation with real ω and the radiation condition (1.5) do not
belong to H because gradψ 6∈ L2(Ge).

On the other hand, the choice of functions in H used in the spectral problem
(4.1) for the description of possible right-hand sides F in (4.1) is too wide: in the
original mechanical problem we were interested in loads acting only upon the shell
and not upon the fluid, especially infinitely far from the shell.

To correct the situation we shall change the statement of the exterior spectral
problem following Vainberg

18. Namely, let us first consider the resolvent of the
exterior problem

Rω = (A− ω2I)−1 , (4.4)



defined in the sense of subsection 4.1 as a bounded operator acting in H. Note that
for the convenience of further analysis we have switched in (4.4) from the spectral
parameter λ to the frequency ω. The change of the spectral parameter λ = ω2 maps
the complex λ-plane with a cut along the non-negative real semi-axis onto the upper
complex ω-half-plane. Therefore, we are considering (initially) the operator Rω for
Im ω > 0. In this half-plane the operator Rω is a holomorphic operator-valued
function of ω with values in H.

The general construction of Vainberg
18 (see also the very detailed description

in Chapter 9 of Sanchez-Hubert–Sanchez-Palencia
15) allows us to continue

the resolvent through the continuous spectrum on the whole ω-complex plane. For
each ω, the resulting operator which we still denote Rω acts from the Hilbert space

Hmin =
{
f = (u(α), ψ(x)) : u ∈ L2(Γ), ψ ∈ H1

loc(Ge), supp gradψ ⊂ Gτ

}
with the scalar product (

f (1), f (2)
)
Hmin

=
(
f (1), f (2)

)
H

into the Hilbert space

Hmax ={
f = (u(α), ψ(x)) : u ∈ L2(Γ), ψ ∈ H1

loc(Ge), exp(−|x|2/2)gradψ ∈ L2(Ge)
}

with the scalar product(
f (1), f (2)

)
Hmax

= h

∫∫
Γ

u(1) ·u(2)dS+ρ

∫∫∫
Ge

exp(−|x|2/2)gradψ(1) · gradψ(2) dV.

Here Gτ = Ge ∩ {|x| < τ}, and τ is some fixed sufficiently large number such that
the shell Γ lies within the ball {|x| < τ}.

It may be shown that Rω is a meromorphic function of ω with values in
L(Hmin,Hmax) (the space of bounded linear operators acting from Hmin into Hmax).
Its poles are situated in the lower half-plane {Im ω < 0} and are of finite multiplic-
ities; there is a finite number of poles in any compact subset of C. These poles are
called scattering frequencies of the exterior problem, and are the main subject of
our study in this and the next Sections.

4.3. Radiation conditions
The construction using the analytic continuation described in the previous sub-

section is a bit awkward from the practical point of view. In practice, this con-
struction leads to the appearance of the radiation conditions which “single out”
the required solutions and allow to analyze the problem effectively. We gave the



radiation condition for the real frequencies ω in Section 1 (see Eq. (1.5)). Now we
shall describe a construction of the radiation conditions for all ω ∈ C.

Consider a sphere Γ′ = {|x| = τ}, where τ is large enough so that the shell Γ
lies within this sphere. We denote the domain bounded by G and Γ′ by Ge

′, and
the exterior of the sphere Γ′ by Ge

′′. Obviously, Ge = Ge
′ ∪ Γ′ ∪ Ge

′′. Let ψ(x)
be a solution in Ge of the Helmholtz equation (1.4) with some complex frequency
ω 6= 0. Expanding ψ(x) for x ∈ Ge

′′ to a Fourier series in spherical harmonics we
get

ψ(x) =
+∞∑
j=0

j∑
m=−j

ajm(r)Y m
j (α′) , (4.5)

where the functions ajm(r) satisfy the spherical Bessel equation

1
r2

∂

∂r
r2 ∂

∂r
ajm − j(j + 1)

r2
ajm +

ω2

c2
ajm = 0 ,

and, therefore,
ajm(r) = a

(1)
jmh

(1)
j

(ωr

c

)
+ a

(2)
jmh

(2)
j

(ωr

c

)
. (4.6)

Here a
(1)
jm, a

(2)
jm are constants, h

(1)
j (·) and h

(2)
j (·) are the spherical Hankel functions

of the first and the second kind, respectively, r = |x|, α′ = (θ, ϕ) are the spherical
coordinates on Γ′,

Y m
j (α′) =

1
2τ

√
2j + 1

π
· (j − |m|)!
(j + |m|)!P

|m|
j (cos θ) exp(imϕ)

are the spherical functions normalized with respect to the scalar product

(v, w)′ = τ2

2π∫
0

π∫
0

vw sin θ dθ dϕ

(recall that τ is the radius of the sphere Γ′).
Assuming that ω is real, let us substitute the function (4.5) into the Sommerfeld

radiation condition (1.5). Using the asymptotics of the Hankel functions for big
values of the argument1, we obtain the equivalent form of the radiation condition
for real ω:

a
(2)
jm = 0 , j = 0, 1, 2, . . . , |m| 6 j . (4.7)

The rigorous proof of equivalence between Eqs. (1.5) and (4.7) requires the use of
the smoothness of ψ(x).

It is natural to assume that Eqs. (4.7) are the radiation conditions for all ω,
including the complex ones.



From the mechanical point of view, the radiation conditions (4.7) allow one to
distinguish between two possible types of solutions of the Helmholtz equation: the
outgoing solutions which correspond to the waves propagating towards infinity and
which are singled out by (4.7), and the incoming solutions which correspond to the
waves propagating from infinity towards the shell and which do not satisfy (4.7).

In order to summarize the mathematical properties of the scattering frequencies,
let us introduce the bilinear form〈

f (1), f (2)
〉
H

= h

∫∫
Γ

u(1) · u(2) dS + ρ

∫∫∫
Ge

gradψ(1) · gradψ(2) dV , (4.8)

which differs from the scalar product (4.3) by the absence of complex conjugation.
We shall compute the bilinear form (4.8) not only for elements of H but also for
elements of Hmax, that is we shall allow the situation in which ψ(1), ψ(2) grow
exponentially as |x| → +∞. In this case the volume integral from the right-hand
side of Eq. (4.8) requires regularization. We shall evaluate it as∫∫∫

Ge

gradψ(1) · gradψ(2) dV =

lim
ε→+0

∫∫∫
Ge

exp(−ε|x| log |x|) gradψ(1) · gradψ(2) dV .

It may be shown that such a regularization is well-defined for any functions ψ(1)

and ψ(2) which satisfy the Helmholtz equation with some frequencies ω(1) and ω(2)

such that
ω(1) + ω(2) 6∈ {z : Re z = 0 , Im z 6 0} .

Theorem 4.1. The resolvent of the exterior problem Rω (as an operator acting
from Hmin to Hmax) admits a meromorphic continuation onto the whole complex ω-
plane. The poles of the meromorphic continuation (or the scattering frequencies of
the exterior problem) are the values of ω for which the problem (1.4), (1.6−), (1.7),
(4.7) has a non-trivial solution (eigenform) f = (u, ψ). The pole ω = ω0, Re ω0 6= 0,
is simple if and only if the eigenforms f (k), k = 1, 2, . . . , l, corresponding to this
scattering frequency can be orthonormalized by the condition

〈
f (k), f (k′)

〉
H

= δkk′ .
In this case in the vicinity of the resonance

Rω =
1

ω2
0 − ω2

·
l∑

k=1

f (k)
〈
· , f (k)

〉
H

+ R̃ω , (4.9)

where R̃ω is the regular part of the resolvent.



5. Asymptotics of scattering frequencies of the exterior problem
Generally, the asymptotic formulae for the scattering frequencies of the exterior

problem are quite similar to those for eigenfrequencies of the interior problem, see
Section 3. In particular, the same decomposition of the scattering frequencies into
three series takes place, and one has to examine these three series separately. The
main difference between the interior and exterior problems is that in the latter case
the spectrum of scattering frequencies is not real due to radiation, so we have to
pay additional attention to the imaginary parts of eigenfrequencies.

5.1. Fluid and tangential scattering frequencies
As in the the case of a Helmholtz equation without a shell7,17,18, the fluid

scattering frequencies are situated in the complex plane quite far from the real line:

| Im ωfl| = O(1) as h → +0 .

This happens due to the strong radiation of energy towards infinity by the corre-
sponding eigenmodes. Therefore, as we shall demonstrate in greater detail in the
next Section, the fluid scattering frequencies do not generate resonances in the the
exterior problem of forced vibrations and are not very interesting from the mechan-
ical point of view. We do not consider them any further.

The tangential series lies at a distance O(h) away from the real line, but in the
first approximation remains real and is determined from the same system (3.1) as
in the case of the interior problem.

5.2. Flexural scattering frequencies
The flexural scattering frequencies are located very close to the real line: if we

consider the low frequency range Reωfl ∼ 1, then the imaginary part of a flexural
scattering frequency is O(h∞). This corresponds to the fact that they radiate very
little.

One can use the formulae obtained in Section 3 for the flexural eigenfrequencies
of the interior problem in order to compute the flexural scattering frequencies of the
exterior problem with small modifications. Firstly, one has to invert the signs of all
curvatures in Eqs. (3.4) and (3.7). Secondly, one has to understand the counting
function Nh(ω) in Eqs. (3.5), (3.8) as the number of scattering frequencies with the
real part less than a given ω. Thirdly, one has to remove the term δ0m from the
right-hand side of (3.3). Since these changes are elementary, we do not present the
resulting formulae, see 15,16,22,23.

In principle the same formulae can be used for higher frequencies6, however the
results for higher frequencies were obtained on the “physical level of rigour” without
detailed mathematical proofs.



6. Resonance phenomena

6.1. Statement of the problem
One of the most important problems in the theory of vibrations of shells con-

tacting fluid is to find effective asymptotic formulae for the solutions of the problem
of forced vibrations (interior and exterior). In this Section we concentrate on the
exterior problem since the interior one is well presented in the accessible literature15.

In order to make the problem more realistic we introduce an additional dimen-
sionless parameter γ > 0 which characterizes the damping in the material of the
shell. The internal friction in the shell prevents the system from developing un-
realisticly sharp peaks (resonances) in the amplitude vs. frequency diagram and
therefore makes the problem tractable for all ω in the selected frequency range.
Recall that in the absence of the internal friction the imaginary parts of flexural
eigenfrequencies are very small, of order of h+∞.

With account of the damping in the shell material the shell equation (1.6−)
reads

(1 − iγ)hLu = hω2u − ρω2ψ|Γn + g . (6.1)

Here the real frequency ω varies in the given range [Ωmin,Ωmax], 0 < Ωmin <
Ωmax, Ωmin ∼ 1, Ωmax ∼ 1, and a smooth load g(α) is given. This equation is
supplemented by the Helmholtz equation (1.4), the non-penetration condition (1.7)
and by the Sommerfeld radiation condition (1.5). We also introduce a technical
requirement

log γ

log h
∼ 1 ,

which is satisfied in most practical situations.

6.2. Iteration process and asymptotic expansion in the absence of tangential eigen-
frequencies

Suppose that our frequency range [Ωmin,Ωmax] does not contain any of the
eigenfrequencies ωtn

j of the auxiliary tangential problem (3.1). Under this additional
assumption we shall describe now a formal asymptotic procedure for solving our
problem (6.1), (1.4), (1.7), (1.5).

Let us denote by u(k)(α), ψ(k)(x), k = 0, 1, 2, . . . , the kth asymptotic approx-
imation to the solution u(α), ψ(x) of the problem (6.1), (1.4), (1.7), (1.5). The
asymptotic process for determining these approximations is as follows.

Let us set u
(0)
3 (α) ≡ 0 and determine u

(0)
1 (α), u

(0)
2 (α) from the system of equa-

tions

(1 − iγ)
(

`11 `12
`21 `22

)(
u

(0)
1

u
(0)
2

)
− ω2

(
u

(0)
1

u
(0)
2

)
=

1
h

(
g1

g2

)
.

Then we determine ψ(0)(x) from the equation

∆ψ(0) +
ω2

c2
ψ(0) = 0



subject to the conditions

ψ(0)
∣∣∣
Γ

=
1

ρω2

(
g3 − h(1 − iγ)

((
`31 +

h2

12
n31

)
u

(0)
1 +

(
`32 +

h2

12
n32

)
u

(0)
2

))
,

∂ψ(0)

∂r
− iω

c
ψ(0) = o(r−1) as r → ∞ .

Now, assume that we have already determined u(k)(α), ψ(k)(x), for some k =
0, 1, 2, . . . . Then u(k+1)(α), ψ(k+1)(x) is determined in the following way. Set

u
(k+1)
3 =

∂ψ(k)

∂n

∣∣∣∣
Γ

.

The tangential displacements u
(k+1)
1 (α), u

(k+1)
2 (α) are determined from the system

of equations

(1 − iγ)
(

`11 `12
`21 `22

)(
u

(k+1)
1

u
(k+1)
2

)
− ω2

(
u

(k+1)
1

u
(k+1)
2

)
=

1
h

(
g1

g2

)
− h2

12
(1 − iγ)

(
n11 n12

n21 n22

)(
u

(k)
1

u
(k)
2

)
− (1 − iγ)

(
h2

12 n13 + `13
h2

12 n23 + `23

)
u

(k+1)
3 .

Then we determine ψ(k+1)(x) from the equation

∆ψ(k+1) +
ω2

c2
ψ(k+1) = 0

subject to the conditions

ψ(k+1)
∣∣∣
Γ

=
1

ρω2

(
g3 + ρhω2u

(k+1)
3

−h(1 − iγ)
((

`31 +
h2

12
n31

)
u

(k+1)
1 +

(
`32 +

h2

12
n32

)
u

(k+1)
2

))
,

∂ψ(k+1)

∂r
− iω

c
ψ(k+1) = o(r−1) as r → ∞ ,

and so on.
The asymptotic process described above is organized in such a manner that at

each stage we have to solve partial differential equations which do not contain the
small parameter h in their coefficients; h appears only in the non-homogeneous terms
(right-hand sides and boundary conditions). Consequently, our approximations
u(k)(α), ψ(k)(x) are polynomials in h. Moreover, our asymptotic process is such
that the correction introduced at each iteration is of an order in h which grows with



the number of the iteration. Consequently, the coefficients of our polynomials at
any given power of h “stabilize” when the number of the iteration tends to infinity.
As a result, our approximations u(k)(α), ψ(k)(x) turn to

up(α) ∼
+∞∑

j=−1

up,j(α)hj , p = 1, 2, (6.2)

u3(α) ∼
+∞∑
j=0

u3,j(α)hj , (6.3)

ψ(x) ∼
+∞∑
j=0

ψj(x)hj (6.4)

when k → +∞; here all the up,j(α), p = 1, 2, 3, and the ψj(x) are independent of
h.

This is the formal asymptotic expansion for the solution u(α), ψ(x) of the prob-
lem (6.1), (1.4), (1.7), (1.5), in the sense that if we formally substitute Eqs. (6.2)–
(6.4) into our system (6.1), (1.4), (1.7), (1.5) and collect the terms with the same
power of the small parameter h, the Eqs. (6.1), (1.4), (1.7), (1.5) will be satisfied.

It is worth noting that the functions up,j(α) and ψj(x) depend on the second
small parameter, that is on the damping ratio γ. However this dependence is of
a regular character in the sense that these functions are holomorphic in γ in a
neighbourhood of γ = 0. This is why we do not write an additional expansion of
each up,j(α) and ψj(x) into a power series with respect to γ, it is simply not very
interesting. However, we heavily use here the fact that our frequency range does
not contain the eigenfrequencies of the tangential problem. The theorem about the
asymptotic convergence of the formal expansions (6.2)–(6.4) is given in Vassiliev

23.

6.3. Asymptotic expansion in the vicinity of a tangential eigenfrequency
Let ωtn

j ∼ 1 be a simple eigenfrequency of the auxiliary tangential problem
(3.1). Then, the exterior problem has a scattering frequency ω0 such that

Re ω0 ∼ ωtn
j , Im ω0 ∼ O(h) + O(γ) .

Let us denote by f0 = (u0, ψ0) the corresponding eigenform of the exterior problem
normalized by the condition 〈f0, f0〉H = 1. Using Theorem 4.1 and Eq. (4.8) we
conclude that for ω close to ωtn

j the solution (u, ψ) of the exterior non-homogeneous
problem has the asymptotics

f =

∫∫
Γ

g · u0 dΓ

ω2
0 − ω2

f0 + f̃ , (6.5)



where f̃ = (ũ, ψ̃) admits (regular) asymptotic expansions of the type (6.2)–(6.4),
see Vassiliev

23 for proofs. Note, however, that in this case the dependence of the
first term in (6.5) on γ is non-trivial.

6.4. Interpretation of the results

The asymptotic expansions (6.2)–(6.4) and (6.5) provide important information
about the behaviour of the solution of the exterior non-homogeneous problem in
different frequency ranges and under different types of loads.

Before proceeding to this analysis let us recall that we derived our expan-
sions (6.2)–(6.4) and (6.5) under the assumption that the load g(α) is smooth
(g ∈ C∞(Γ)). The analysis of the asymptotic formulae (6.2)–(6.5) shows that the
flexural scattering frequencies (which constitute the bulk of all scattering frequen-
cies) do not affect our solution. The explanation of this surprising phenomenon is
that the eigenforms corresponding to the flexural scattering frequencies are strongly
oscillating along Γ (namely, their characteristic wavelengths are of order h3/5, see
Vassiliev

20,22,23 for details), so the smooth external load g is asymptotically or-
thogonal to the eigenforms u in L2(Γ).

Therefore, applying a smooth load upon the shell and changing the frequency of
vibration, one can observe only the resonances generated by the tangential scatter-
ing frequencies. This explain why the bulk of flexural scattering frequencies usually
cannot be seen in scattering experiments.

In the non-smooth case (g ∈ D′(Γ)) the situation is completely different. There
is no reason for the load to be asymptotically orthogonal to the eigenforms of the
homogeneous problem, so all the O(h−6/5) eigenfrequencies of the homogeneous
problem are in general excited, which creates an extremely complicated vibration
pattern on the shell. The difficulties arising in the case of a non-smooth load
can be seen from our asymptotic process: though we gain powers of h with each
iteration, the order of singularities increases as well, so one cannot expect asymptotic
convergence. Nevertheless, our asymptotic expansions make some sense even in the
non-smooth case. Namely, it was shown in Vassiliev

22,23 that for any g ∈ D′(Γ)
we have the asymptotic convergence of ψ outside the immediate vicinity of the shell.

The case when the shell is a shell of revolution and the load is concentrated
on a circle (i.e. g is, after the separation of the angular variable, a δ-function or
a derivative of a δ-function) was analyzed in Goldenveizer–Vassiliev

4; see also
Vassiliev

22 for more details.

Note that the case of non-smooth loads is also very important in applications
because it naturally arises when one tries to describe the effect of various stiffening
elements supporting the shell, like bulkheads, stringers and stiffening rings. In
this case there is a complex interaction between flexural and tangential vibrations
modes, see Vassiliev

22 for details and graphs.



7. Effect of fluid viscosity

7.1. Statement of the problem
In some situations, it is necessary to consider more elaborate models of shell-

fluid coupled vibrations than those studied in Sections 1–6. In particular, one may
need to take into account the viscosity of the fluid. The authors of this paper have
obtained a number of results in this problem; these results are briefly discussed in
this Section.

We restrict ourselves to the interior problem which is more motivated by prac-
tice.

The scalar Helmholtz equation which describes the vibrations of an ideal com-
pressible fluid should be replaced in the case of a viscous compressible fluid by the
system of four scalar equations

−ρiωv = µ

(
∆v +

1
3

graddivv
)
− grad p , (7.1)

−iωv = −ρc2divv , (7.2)

where v(x) = v∗/c∗s = (v1, v2, v3) is the vector of fluid velocity, p(x) = p∗/E∗ is
the fluid pressure, and µ = µ∗/(ρ ∗s E∗R∗2) is the dimensionless viscosity coeffi-
cients which is considered further on as the additional small parameter. As usually,
Eqs. (7.1)–(7.2) are obtained after the separation of the time factor exp(−iωt).

The equations of shell vibrations with account of the presence of the viscous
fluid have the form

hLu = hω2u + g − (−pn + µTv)|Γ , (7.3)

where the operator T is defined in the vicinity of the shell as

Tv = σ′(v)n ,

the components of the viscous stress tensor σ′(v) being

σ′
ij(v) = −2

3
δijdivv +

(
∂vj

∂xi
+

∂vi

∂xj

)
, i, j = 1, 2, 3 .

Finally, Eqs. (7.1)–(7.3) should be supplemented by the boundary conditions

v|Γ = −iωu . (7.4)



7.2. Effect of viscosity on eigenfrequencies
Taking the viscosity into account changes the structure of the spectrum of free

vibrations (g = 0) significantly. In particular, the spectrum is no longer purely
discrete: one can show (see LEVITIN

8−11) that there are two points of the essential
spectrum which are located on the imaginary ω-axis. The remaining spectrum
consists of isolated eigenfrequencies of finite multiplicity, and is located for any
µ > 0 within the sector

{Im ω 6 −C1µ, |Re ω| 6 C2µ
−1 Im ω} ,

where C1, C2 are some positive constants independent of µ.
As µ → +0 the spectrum of eigenfrequencies of the viscous problem splits into

two subseries. The eigenfrequencies of the first subseries are localized in the vicinity
of the imaginary non-negative ω-semiaxis and do not present any mechanical inter-
est (though there is a vast mathematical literature devoted to their study). The
eigenfrequencies of the second subseries tend (as µ goes to zero) to the eigenfrequen-
cies of the inviscid problem (1.4), (1.6+), (1.7) (g = 0). One of the most important
results is that if ω0 > 0 is a simple eigenfrequency of the inviscid problem, then the
corresponding eigenfrequency ω of the viscous problem has an absolutely convergent
power series expansion

ω = ω0 + µ1/2ω1 + µ1ω2 + . . . .

The leading term of this expansion can be found analytically:

µ1/2ω1 =
−i3/2ρ1/2ω

1/2
0 ‖u0τ − grad τψ0‖2

L2(Γ)

2
(
h‖u0‖2

L2(Γ) + ρ‖gradψ0‖2
L2(Gi)

) . (7.5)

Here u0, ψ0 is the eigenform of the inviscid problem corresponding to ω0, and the
subscript τ is used to denote the tangential components of vectors on Γ.

With the account of the asymptotic formulae of Section 3 (as h → +0) Eq. (7.5)
allows to estimate the effect of viscosity on various types of eigenfrequencies. In
particular,

| Im ω| = O
(
µ1/2h−1

)
for tangential eigenfrequencies,

| Im ω| = O
(
µ1/2h−3/5

)
for flexural eigenfrequencies,

| Im ω| 6
(
µ1/2h0

)
for fluid eigenfrequencies.

Therefore, the effect of dissipation in viscous fluid is most noticeable for the tan-
gential eigenfrequencies and least noticeable for the fluid eigenfrequencies.



We refer the reader to 8−14 for other results in the theory of vibrations of shells
contacting viscous fluid, such as the asymptotics of solutions in the problem of
forced vibrations, and the exterior problem.
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