Dirichlet Laplacian, *Dirichlet–Laplace operator* – In a broad sense, a restriction of the **Laplace operator** to the space of functions satisfying (in some sense) homogeneous **Dirichlet boundary conditions**. For an open set Ω in \mathbb{R}^n , the Dirichlet Laplacian is usually defined via the *Friedrichs extension* procedure. Namely, first consider the (negative) Laplace operator $-\Delta$ defined on the subspace $C_0^{\infty}(\Omega) \subset L_2(\Omega)$ of all infinitely smooth functions with compact support in Ω . This is a symmetric operator, and the associated quadratic form (with the same domain $C_0^{\infty}(\Omega)$) is given by the **Dirichlet integral**

$$E(f) = \int_{\Omega} |\nabla f|^2 \, dx \,. \tag{1}$$

Then the form E is closable with respect to the norm

$$(E(f) + ||f||_{L_2(\Omega)})^{1/2}$$

The domain of its closure \tilde{E} is the **Sobolev space** $H_0^1(\Omega) = W_0^{1,2}(\Omega)$. Then \tilde{E} (given again by the right-hand side of (1)) is the quadratic form of a non-negative **self-adjoint operator** (denoted by $-\Delta_{\text{Dir}}$); moreover,

$$\operatorname{Dom}\left((-\Delta_{\operatorname{Dir}})^{1/2}\right) = \operatorname{Dom}(\tilde{E}) = H_0^1(\Omega) \,.$$

The operator Δ_{Dir} (sometimes taken with the minus sign) is called the *Dirichlet Laplacian* (in the weak sense).

If Ω is bounded domain with boundary $\partial \Omega$ of class C^2 , then

$$\operatorname{Dom}\left(-\Delta_{\operatorname{Dir}}\right) = H_0^1(\Omega) \cap H^2(\Omega)$$

The Dirichlet Laplacian for a compact **Riemannian** manifold with boundary is defined similarly.

For a bounded open set Ω in \mathbb{R}^n , $-\Delta_{\text{Dir}}$ is a positive unbounded **linear operator** in $L_2(\Omega)$ with a discrete spectrum (cf. also **Spectrum of an operator**). Its eigenvalues $0 < \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n \leq \ldots$ (written in increasing order with account of multiplicity) can be found using the *Rayleigh-Ritz variational formula* (or *max-min formula*)

$$\lambda_n(\Omega) = \inf\{\lambda(L) : L \subseteq C_0^{\infty}(\Omega), \dim(L) = n\},\$$

where

$$\lambda(L) = \sup\{E(f) : f \in L, \|f\|_{L_2(\Omega)} = 1$$

for a finite-dimensional linear subspace L of $C_0^{\infty}(\Omega)$. It follows from the Rayleigh-Ritz formula that the eigenvalues λ_n are monotonically decreasing functions of Ω . See also [3] for the survey of the asymptotic behaviour of the eigenvalues of the Dirichlet Laplacian and operators corresponding to other boundary value problems for elliptic differential operators.

References

[1] DAVIES, E.B.: Spectral Theory and Differential Operators, Cambridge Univ. Press, 1995.

[2] EDMUNDS, D.E. AND EWANS, W.D.: Spectral Theory and Differential Operators, Clarendon Press, Oxford, 1987.

 [3] SAFAROV, YU. AND VASSILIEV, D.: The Asymptotic Distribution of Eigenvalues of Partial Differential Operators, Vol. 55 of Transl. Math. Monographs, Amer. Math. Soc., 1997.

M. Levitin

MSC 1991: 35J05