
APPENDIX B

FOURIER TAUBERIAN THEOREMS

Michael Levitin*

The objective of this appendix is to formulate and prove Fourier Tauberian theo-
rems as theorems of classical analysis without any reference to partial differential
equations, spectral theory etc.

The notion of a Tauberian theorem covers a wide range of different mathematical
results, see the history of the subject in [Ga]. These results have the following in
common. Suppose that we have some mathematical object with highly irregular
behaviour (say, a discontinuous function or a divergent series) and suppose that we
apply some averaging procedure which makes our object substantially more regular
(say, a transformation which turns our discontinuous function into an infinitely
smooth one or makes our divergent series absolutely convergent). A Tauberian
theorem in our understanding is a mathematical result which recovers properties
of the original irregular object from the properties of the averaged object.

Tauberian theorems described in this appendix are associated mainly with the
Fourier transform. We give four main results — Theorems B.2.1, B.3.1, B.4.1 and
B.5.1. Theorem B.2.1 essentially repeats the original Fourier Tauberian Theorem of
B.M. Levitan, see also [Hö3, vol. 3, Lemma 17.5.6]. Theorem B.3.1 provides a useful
rough estimate. Theorem B.4.1 is a refined (with improved remainder estimate)
theorem of the type introduced by Safarov [Sa2]–[Sa6] for studying general (i.e., not
necessarily polynomial) spectral asymptotics. Finally, Theorem B.5.1 is a special
version of Theorem B.4.1 specifically designed for studying polynomial two-term
spectral asymptotics; a theorem of this sort was implicitly used by Duistermaat
and Guillemin in their pioneering paper [DuiGui].

Hereinafter in this appendix we use the “hat” to denote the Fourier transform
of a function. By a prime we denote the derivative.

B.1. Introductory remarks

It is well known that, under certain conditions, the asymptotic behaviour of a
function at infinity is determined by the singularities of its Fourier transform. We
illustrate this fact by the following elementary example.

Example B.1.1. Let f̂(t) be a complex-valued function on R which is infinitely
smooth outside the point t = 0 , at which the function f̂(t) together with all its
derivatives has finite left and right limits. We denote

δk = f̂ (k)(+0) − f̂ (k)(−0) , k = 0, 1, . . .
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If f̂(t) and all its derivatives vanish faster than any given negative power of |t| as
t → ∞ then the inverse Fourier transform f(λ) = F−1

t→λ[f̂(t)] admits the following
asymptotic expansion:

(B.1.1) f(λ) ∼ 1
2π

∞∑
k=0

δk

(−iλ)k+1
, λ → ∞ .

We shall consider a more complicated situation. First, we allow f̂ to be a
distribution. Second, we allow f̂ to have singularities not only at the origin. Third,
we assume that information on f̂(t) is given only on a finite time interval rather
than for all t ∈ R . Under these assumptions it is impossible to construct a full
asymptotic expansion of the type (B.1.1). Nevertheless, it turns out that for a
monotone function f one can still relate the behaviour of f(λ) at infinity to the
singularities of its Fourier transform. This relation is the subject of the Fourier
Tauberian theorems formulated in this appendix.

We shall denote by F+ the class of real-valued monotone non-decreasing func-
tions N on R such that N(λ) = 0 for l 6 0 , and λ−pN(λ) → 0 as λ → +∞ ,
where p is some positive number depending on the particular function N . The
latter condition can be rewritten as

(B.1.2) N(λ) = o(λp) , λ → +∞ .

Let us fix a real-valued function ρ on R satisfying the following five conditions:
(1) ρ ∈ S(R) ;
(2) ρ(λ) > 0 for all λ ∈ R ;
(3) ρ̂(0) =

∫
ρ(λ) dλ = 1 ;

(4) supp ρ̂ is compact;
(5) the function ρ(λ) is even.

Such a function ρ exists (see, for instance, [Hö3, vol. 3, Sect. 17.5]). Note that
under conditions (1)–(5) the Fourier transform ρ̂ is a real even function.

We shall denote ρT (λ) := Tρ(Tλ) , ρ̂T (t) := ρ̂(t/T ) , where T is a positive
parameter. Obviously, if the function ρ satisfies the five conditions stated above
then ρT satisfies these conditions as well.

Throughout this appendix ν will denote some real number, not necessarily pos-
itive. All subsequent asymptotics in this appendix are written with respect to
λ → +∞ . Of course, asymptotics with respect to λ → −∞ are of no interest be-
cause for all N ∈ F+ we have N(λ) ≡ 0 and (N ∗ρ)(λ) = O(|λ|−∞) as λ → −∞ .

B.2. Basic theorem

In this section we will be using the notation C for various positive constants
which may depend only on the choice of the function ρ and on the number ν but
are independent of the function N .

Theorem B.2.1. If N ∈ F+ , and

(B.2.1) (N ′ ∗ ρ)(λ) 6 λν , ∀λ > 1 ,

then

(B.2.2) |N(λ) − (N ∗ ρ)(λ)| 6 C λν , ∀λ > 1 .

By an elementary rescaling argument Theorem B.2.1 immediately implies
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Corollary B.2.2. If N ∈ F+ and (N ′ ∗ ρ)(λ) = O(λν) then

(B.2.3) N(λ) = (N ∗ ρ)(λ) + O(λν) .

Moreover, if the estimate (N ′ ∗ ρ)(λ) = O(λν) holds uniformly on some subset of
F+ , then (B.2.3) is also uniform.

Clearly, formula (B.2.3) can be rewritten as

N(λ) = F−1
t→λ[ρ̂(t)N̂(t)] + O(λν) ,

which means that, as promised, we have established the relation between the be-
haviour of N(λ) at infinity and the behaviour of N̂(t) in the neighbourhood of
the origin.

The proof of Theorem B.2.1 is based on the following technical lemma.

Lemma B.2.3. Under the conditions of Theorem B.2.1

(B.2.4) |N(λ + s) − N(λ)| 6 C(1 + |s|)1+|ν|λν , ∀λ > 1 ,

uniformly over all s ∈ R .

Proof. It is sufficient to prove (B.2.4) in the case when λ and s are integers.
Indeed, the general case is reduced to this one by perturbing λ and s to one of
their two nearest integers and using the monotonicity of N . Note also that the
case s = 0 is trivial. Thus, in order to prove the lemma it is sufficient to establish
the following two estimates:

(B.2.5) N(λ + s) − N(λ) 6 Cs1+|ν|λν , ∀λ, s ∈ N ,

(B.2.6) N(λ) − N(λ − s) 6 Cs1+|ν|λν , ∀λ, s ∈ N .

We have

(B.2.7) (N ′ ∗ ρ)(λ) =
∫

ρ(λ − µ) dN(µ) > C

λ+1∫
λ−1

dN(µ)

= C
(
(N(λ + 1) − N(λ)) + (N(λ) − N(λ − 1)

)
(here we have used the fact that ρ(Λ) > C > 0 for Λ ∈ [−1, 1] ). Formulae (B.2.1),
(B.2.7) imply

(B.2.8) N(λ + 1) − N(λ) 6 C λν , ∀λ ∈ N ,

(B.2.9) N(λ) − N(λ − 1) 6 C λν , ∀λ ∈ N .
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Adding up the inequalities (B.2.8) we get

N(λ + s) − N(λ) =
s∑

k=1

(N(λ + k) − N(λ + k − 1))

6 C

s∑
k=1

(λ + k − 1)ν 6
{

Cs(λ + s − 1)ν , if ν > 0 ,

Csλν , if ν < 0 .

Since in the case ν > 0 we have (λ + s − 1)ν 6 sνλν , the above formula implies
(B.2.5).

Let now prove (B.2.6). It is sufficient to prove (B.2.6) for s 6 λ because for
s > λ we have N(λ)−N(λ− s) = N(λ)−N(λ−λ) . So further on s 6 λ . Adding
up the inequalities (B.2.9) we get

N(λ) − N(λ − s) =
s∑

k=1

(N(λ − k + 1) − N(λ − k))

6 C

s∑
k=1

(λ − k + 1)ν 6
{

Csλν , if ν > 0 ,

Cs(λ − s + 1)ν , if ν < 0 .

Since in the case ν < 0 we have (λ − s + 1)ν 6 s|ν|λν , the above formula implies
(B.2.6). ¤

Proof of Theorem B.2.1. Using (B.2.4) we obtain

|(N ∗ ρ)(λ) − N(λ)| =
∣∣∣∣
∫

(N(λ − µ) − N(λ)) ρ(µ) dµ

∣∣∣∣
6

∫
|N(λ − µ) − N(λ)| ρ(µ) dµ 6 C λν

∫
(1 + |µ|)1+|ν| ρ(µ) dµ = C λν

for all λ > 1 . ¤
The following is a weighted version of Theorem B.2.1.

Theorem B.2.4. Let N ∈ F+ and

(B.2.10) (N ′ ∗ ρT )(λ) 6 d λν , ∀λ > T−1 ,

where d > 0 , T > 0 are parameters. Then

(B.2.11) |N(λ) − (N ∗ ρT )(λ)| 6 C dT−1λν , ∀λ > T−1 .

Here the constant C is the same as in Theorem B.2.1.

Proof. Set λ̃ := Tλ , Ñ(λ̃) := d−1T 1+νN(λ̃/T ) . Then (B.2.10) is equivalent
to

(Ñ ′ ∗ ρ)(λ̃) 6 λ̃ν , ∀λ̃ > 1 .

Therefore by Theorem B.2.1

|Ñ(λ̃) − (Ñ ∗ ρ)(λ̃)| 6 C λ̃ν , ∀λ̃ > 1 .

The latter is equivalent to (B.2.11). ¤
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B.3. Rough estimate for the nonzero singularities

In this section we give a simple result which shows that the singularities of the
distribution Fλ→t[N ′(λ)] at different t are not totally independent. Namely, we
show that the singularities at t 6= 0 cannot be stronger than the singularity at
t = 0 .

Theorem B.3.1. If N ∈ F+ and

(B.3.1) (N ′ ∗ ρ)(λ) = O(λν) ,

then for any function γ such that γ̂ ∈ C∞
0 (R) we have

(B.3.2) (N ′ ∗ γ)(λ) = O(λν) ,

and moreover

(B.3.3) lim sup
λ→+∞

|(N ′ ∗ γ)(λ)|
λν

6 Cρ,γ lim sup
λ→+∞

(N ′ ∗ ρ)(λ)
λν

,

where Cρ,γ > 0 is a constant independent of the choice of the function N and of
the number ν .

Proof. Let us choose a number δ > 0 such that ρ̂(t) 6= 0 on [−δ, δ] . Further
on we assume without loss of generality that diam(supp γ̂) 6 2δ . Indeed, this
can always be achieved by representing the original function γ as a finite sum of
functions possessing this property.

Let us choose a τ ∈ R such that supp γ̂ ∈ [τ − δ, τ + δ] and denote

α(λ) = eiτλρ(λ) , β(λ) = F−1
t→λ

[
γ̂(t)
α̂(t)

]
.

Then

(B.3.4) (N ′ ∗ γ)(λ) = ((N ′ ∗ α) ∗ β)(λ) .

As ρ is a nonnegative function and dN is a nonnegative measure we have

(B.3.5) |(N ′ ∗ α)(λ)| 6 (N ′ ∗ ρ)(λ) .

Formulae (B.3.4), (B.3.5), (B.3.1) imply (B.3.3) with Cρ,γ =
∫ |β(µ)| dµ . ¤

B.4. General refined theorem

In this section we denote by C positive constants (maybe, different) which
may depend only on the functions Nj , ρ and on the number ν , but not on the
parameters s , T and ε . If a constant depends on some of the parameters s , T
or ε this will be indicated by respective subscripts.
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Theorem B.4.1. Let Nj ∈ F+ , (N ′
j ∗ ρ)(λ) = O(λν) , j = 1, 2 ,

(B.4.1) (N2 ∗ ρ)(λ) = (N1 ∗ ρ)(λ) + o(λν)

and

(B.4.2) (N ′
2 ∗ γ)(λ) = (N ′

1 ∗ γ)(λ) + o(λν)

for any function γ such that γ̂ ∈ C∞
0 (R) , supp γ̂ ⊂ (0,+∞) . Then

N1(λ − ε) − o(λν) 6 N2(λ) 6 N1(λ + ε) + o(λν) , ∀ε > 0 ,

or equivalently

(B.4.3) N1(λ − o(1)) − o(λν) 6 N2(λ) 6 N1(λ + o(1)) + o(λν) .

Formula (B.4.3) means that there exists a (positive) function f
such that f(λ) → 0 as λ → +∞ , and

N1(λ − f(λ)) − λνf(λ) 6 N2(λ) 6 N1(λ + f(λ)) + λνf(λ) .

Formula (B.4.3) differs from standard asymptotic formulae (like (B.2.3) above or
(B.5.2) below) in the sense that we are comparing the graphs of the functions N1(λ)
and N2(λ) not only in the “vertical” direction, but in the “horizontal” direction
as well. This is natural when one compares the graphs of two counting functions:
trying to increase accuracy we inevitably have to start comparing the graphs in
both directions due to the possible presence of discontinuities. This phenomenon is
well known in probability theory, where graphs of monotone functions are compared
using the so-called Lévy metric, [GnKo, Chapter 2, Section 9]. The basic idea in the
definition of the classical Lévy metric is to measure the distance between the graphs
in the direction forming an angle of 3π

4 with the positive λ-semiaxis. Theorem B.4.1
can be reformulated in terms of a weighted Lévy metric, in which the angle is a
function of λ .

We shall prove Theorem B.4.1 in several steps. First, we prove

Lemma B.4.2. Let N ∈ F+ and (N ′ ∗ ρ)(λ) = O(λν) . Then for all s > 0 ,
T > 1 , λ > 1 we have the uniform estimate

(B.4.4) (N ∗ρT )(λ−s)−C(1+sT )−1λν 6 N(λ) 6 (N ∗ρT )(λ+s)+C(1+sT )−1λν .

Proof. For the sake of brevity, we shall prove only the left inequality (B.4.4);
the right one is proved in a similar way.

We have

(N ∗ ρT )(λ − s) − N(λ) =
∫ (

N(λ − s − T−1τ) − N(λ)
)
ρ(τ) dτ

6
−sT∫

−∞

(
N(λ − s − T−1τ) − N(λ)

)
ρ(τ) dτ
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(here we used the monotonicity of N ). Estimating the integrand by Lemma B.2.3
we obtain

(B.4.5) (N ∗ ρT )(λ − s) − N(λ) 6 C λν

+∞∫
sT

(1 − s + T−1τ)1+|ν|ρ(τ) dτ

for λ > 1 . But

(1 − s + T−1τ)1+|ν| 6 (1 + τ)1+|ν| , ∀τ > sT

(here we used the inequalities s > 0 , T > 1 ), and

ρ(τ) 6 C (1 + τ)−3−|ν| , ∀τ > 0 ,

so
+∞∫
sT

(1 − s + T−1τ)1+|ν|ρ(τ) dτ = C

+∞∫
sT

(1 + τ)−2 dτ = C(1 + sT )−1 .

Substituting the latter into (B.4.5) we arrive at (B.4.4). ¤

Remark B.4.3. Obviously, if the estimate (N ′∗ρ)(λ) = O(λν) holds uniformly
on some subset of F+ , then the constant C in (B.4.4) is independent of the par-
ticular function N from this subset (i.e., (B.4.4) is also uniform).

Lemma B.4.2 implies

Lemma B.4.4. Let Nj ∈ F+ , (N ′
j ∗ ρ)(λ) = O(λν) , j = 1, 2 , and

(B.4.6) (N2 ∗ ρT )(λ) = (N1 ∗ ρT )(λ) + o(λν) , ∀T > 1 .

Then (B.4.3) holds.

Proof. Note that both functions N2 and N1 satisfy the conditions of Lemma
B.4.2, and therefore estimates (B.4.4) hold. With account of (B.4.6) the inequalities
(B.4.4) can be rewritten as

(B.4.7) (Nk ∗ ρT )(λ − s) − C(1 + sT )−1λν − o((λ − s)ν)

6 Nj(λ) 6
(Nk ∗ ρT )(λ + s) + C(1 + sT )−1λν + o((λ + s)ν) ,

where j, k = 1, 2, j 6= k. Formulae (B.4.7) imply

(B.4.8) N1(λ − 2s) − C(1 + sT )−1(λν + (λ − s)ν) − o((λ − s)ν)

6 N2(λ) 6
N1(λ + 2s) + C(1 + sT )−1(λν + (λ + s)ν) + o((λ + s)ν) .
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Formula (B.4.8) holds for any fixed s > 0 and T > 1 . So we can set s = T−1/2 .
Then (B.4.8) takes the form

(B.4.9) N1(λ − 2T−1/2) − CT−1/2
(
λν + (λ − T−1/2)ν

)
− o

(
(λ − T−1/2)ν

)
6 N2(λ) 6

N1(λ + 2T−1/2) + CT−1/2
(
λν + (λ + T−1/2)ν

)
+ o

(
(λ + T−1/2)ν

)
.

It remains only to set T = T (λ) , where T (λ) is an increasing function which
tends to +∞ as λ → +∞ . The function T = T (λ) can be chosen to increase so
slowly that for both o-terms appearing in (B.4.9) we have o

(
(λ ∓ T−1/2(λ))ν

)
=

o(λν) ; this remark is necessary because our o-terms (originating from (B.4.6))
might depend on T .

Formula (B.4.9) with the substitution T = T (λ) implies (B.4.3). ¤
Proof of Theorem B.4.1. In view of Lemma B.4.4, it is sufficient to show

that (B.4.1) and (B.4.2) imply (B.4.6). Let us split ρ̂T into the sum of functions
ρ̂T,1, ρ̂T,2 ∈ C∞

0 (R) such that ρ̂(t) > C > 0 for t ∈ supp ρ̂T,1 , and ρ̂T,2(t) vanishes
in a neighbourhood of t = 0 . Then (B.4.2) implies (B.4.6) for ρT,2 because

(Nj ∗ ρT,2)(λ) = F−1
t→λ

[
(it)N̂j(t) (it)−1ρ̂T,2(t)

]
= (N ′

j ∗ ρ̃T,2)(λ)

where j = 1, 2 , and ρ̃T,2(λ) = F−1
t→λ

[
(it)−1ρ̂T,2(t)

]
. Obviously,

(B.4.10) Nj ∗ ρT,1 = Nj ∗ ρ ∗ β , β(λ) = F−1
t→λ

[
ρ̂T,1(t)
ρ̂(t)

]
, j = 1, 2 .

Since the function β is rapidly decreasing, (B.4.1) and (B.4.10) imply (B.4.6) for
ρT,1 . ¤

B.5. Special version of the general refined theorem

We formulate below a special version of the general refined theorem specifically
oriented towards the case when N has a polynomial two-term asymptotics, i.e.,
when the nonzero singularities of the Fourier transform of N ′ are weaker than the
singularity at the origin.

Theorem B.5.1. Let N ∈ F+ , (N ′ ∗ ρ)(λ) = O(λν) , and

(B.5.1) (N ′ ∗ γ)(λ) = o(λν) ,

for any function γ such that γ̂ ∈ C∞
0 (R) , supp γ̂ ⊂ (0,+∞) . Then

(B.5.2) N(λ) = (N ∗ ρ)(λ) + o(λν) .

Remark B.5.2. As will be clear from the proof, if the conditions of Theorem
B.5.1 are fulfilled uniformly on some subset of F+ then (B.5.2) also holds uniformly.
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Theorem B.5.1 has a simpler formulation than Theorem B.4.1, and it can be
viewed as a natural extension of Corollary B.2.2. However, Theorem B.5.1 requires
more restrictive conditions on the functions involved than Theorem B.4.1. Basically,
the conditions of Theorem B.5.1 ensure that the (discontinuous) monotone function
N does not have very big “jumps”, and this is why we are able to compare the
graphs in the “vertical” direction only.

Proof of Theorem B.5.1. According to the Lagrange formula we have for
some θ∓(λ) ∈ (0, 1)

(B.5.3) (N ∗ ρ)(λ ∓ o(1)) − (N ∗ ρ)(λ)

= o(1) (N ′ ∗ ρ) (λ ∓ θ∓(λ) o(1)) = o(1)O(λν) = o(λν) .

In view of Lemma B.4.2 and (B.5.3), it is sufficient to prove that

(B.5.4) (N ∗ ρ)(λ) − (N ∗ ρT )(λ) = (N ∗ (ρ − ρT )) (λ) = o(λν) , ∀T > 1 .

Indeed, then (B.5.2) is obtained from (B.4.4) by substitution s = f1(λ) , T = f2(λ) ,
where f1 and f2 are arbitrary functions such that

f1(λ) → 0 , f2(λ) → +∞ , f1(λ) f2(λ) → +∞ , λ → +∞ .

Since ρ̂(0) = 1 and ρ̂′(0) = 0 , the function ρ̂(t) − ρ̂T (t) has a second order
zero at t = 0 . Therefore (B.5.4) is a consequence of the following lemma, which
completes the proof of Theorem B.5.1.

Lemma B.5.3. Let N ∈ F+ satisfy the conditions of Theorem B.5.1. Assume
that ρ̂0 ∈ C∞

0 (R) and ρ̂0(t) = t2α̂(t) , where α̂ ∈ C∞
0 (R) . Then

(B.5.5) (N ∗ ρ0)(λ) = o(λν) .

Proof. We have

(B.5.6) (N ∗ ρ0)(λ) = F−1
t→λ[N̂(t) t2α̂(t)] = (N ′ ∗ β)(λ) ,

where β = F−1
t→λ[−it α̂(t)] .

Let f̂ ∈ C∞
0 (R) and f̂(t) = 1 in a neighbourhood of origin. Denote f̂δ(t) =

f̂(t/δ) and f̃δ(λ) = F−1
t→λ[−it f̂δ(t)] . Then f̃δ(λ) = δ2 F−1

t→δλ[−it f̂(t)] and∫
|f̃δ(λ)| dλ = δ Cf ,

where Cf =
∫ |F−1

t→λ[−it f̂(t)] | dλ .
Clearly,

(B.5.8) β(λ) = F−1
t→λ[−it (1 − f̂δ(t)) α̂(t)] + F−1

t→λ[−it f̂δ(t) α̂(t)] .

In view of (B.5.1), the contribution to (B.5.6) of first term in the right-hand side of
(B.5.8) is o(λn) . The contribution to (B.5.6) of the second term in the right-hand
side of (B.5.8) is (N ′ ∗ α ∗ fδ) . By Theorem B.3.1 (N ′ ∗ α)(λ) is estimated by
C (λν + 1) , so

| (N ′ ∗ α ∗ fδ)(λ) | 6 δ C Cf (λν + 1) ,

Thus,
| (N ∗ ρ0)(λ) | 6 δ C Cf (λν + 1) + o(λn) .

Since δ can be chosen arbitrarily small, this implies (B.5.5). ¤


