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Abstract. The paper is devoted to four spectral problems for the Lamé system of linear
elasticity in domains of R3 with compact connected boundary S. The frequency is fixed in
the upper closed half-plane; the spectral parameter enters into the boundary or transmission
conditions on S. Two cases are investigated: (1) S is C∞; (2) S is Lipschitz.

INTRODUCTION

In this paper we consider four spectral problems for the Lamé system of linear elasticity, see (1.3).
The system contains the frequency parameter ω, which is a fixed complex number with Reω > 0.
The statements of Problems I–IV are given in Subsection 1.1. The spectral parameter ζ enters into
the boundary conditions (in Problems I, II) or transmission conditions (in Problems III, IV) on
a closed connected surface S, which divides its complement into a bounded domain G+ and an
unbounded domain G−. This surface is assumed to be infinitely smooth in Section 1 and Lipschitz
in Section 2. Our aim is to study the spectral properties of Problems I–IV, including the localiza-
tion of eigenvalues and their asymptotics, the smoothness of the eigenfunctions or, in the case of
nonselfadjoint Problems II–IV, of the root functions, as well as the completeness of these functions
and the summability of Fourier series with respect to them.

More precisely, we study the spectral properties of some integral operators on S that arise after
the reduction of Problems I–IV to equations on S (see Subsection 1.4) under the assumption that
the frequency ω is in some sense nonexceptional. These operators are closely associated with the
Lamé system (1.3). The first two of the operators, T+(ω) and T−(ω), map the boundary data
Tu± of the interior or exterior second (or Traction, or Neumann) boundary value problem into
the boundary data u± of the first (or Dirichlet) boundary value problem, with the inverse sign in
case of T+(ω). Here T is the stress operator on S (see (1.5)) in the direction of the exterior unit
normal ν(x). The third operator A(ω) is the restriction to S of the single layer potential A(ω).
The fourth operator T (ω) is the inverse of −TB(ω), where B(ω) is the double layer potential. See
Subsection 1.4 and formula (1.107).

The spectral problems I–IV are similar to four spectral problems for the Helmholtz equation
proposed by physicists [34] and analyzed mathematically in [1] in the case of smooth S and in [4] in
the case of Lipschitz S (see [4] for more references). The deep analogy between the results for the
Helmholtz equation and for the Lamé system suggests that in a similar manner one can consider
more general second order partial differential equations and systems of equations; we hope to devote
a separate paper to such generalizations. However, the case of the Lamé system is of interest in
itself and is technically more difficult than the case of the Helmholtz equation even if the boundary
is smooth.

*The research of M. S. A. and B. A. A. was supported by RFBR grant 98-01-00132 and INTAS grant 94-2187; part
of the work was done during M. S. A.’s visit to Heriot-Watt University funded by the EPSRC Visiting Fellowship.
The research of M. L. was partially supported by the Nuffield Foundation.
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In the case of a smooth surface S, we use the classical theory of the first and the second bound-
ary value problems of elasticity and the corresponding potential theory described in [22]. However,
for our purposes it is more convenient to use the tools of the theory of elliptic pseudodifferential
operators (ΨDOs) in Sobolev L2-spaces Ht(S), t > 0, and in the beginning of Section 1 we refor-
mulate some well-known results in this spirit. In particular, we show that each of the operators
T±(ω), A(ω), and T (ω) is an elliptic ΨDO of order −1. These operators are either selfadjoint in
L2(S) = H0(S) (when Reω = 0, and, in the case of T+(ω), also when Imω = 0) or very close to
selfadjoint operators, namely, to their real parts (moreover, for the real frequencies ω the operators
T−(ω), A(ω), and T (ω) are “infinitely close” to their real parts). Using these facts, in Subsections
1.8–1.10 we obtain the main theorems of Section 1, which describe the localization and the asymp-
totics of the characteristic numbers and the fast decrease of their imaginary parts, as well as the
infinite smoothness, the completeness of the root functions, and the unconditional convergence of
Fourier series with parentheses with respect to these functions. See the precise statements in these
subsections.

There is no classical potential theory or calculus of ΨDOs in the case of a Lipschitz S, and the
counterparts of some classical facts related to potentials and to the main boundary value problems
have been much harder to obtain. In the case ω = 0, this was done in [10], which had been preceded
by the study of singular integral operators on Lipschitz surfaces in [6, 7] and the study of the Laplace
equation in [32, 33] (see detailed references in [10, 33] and the surveys [20, 21]). First, we extend
the results of [10] to the case of nonreal ω, and then, to the case of real nonzero ω. This approach
is similar to [31, 25], where the results of [32, 33] for the Laplace equation are extended to the
case of the Helmholtz equation. We also use the deep results of [11] for ω = 0. Some additional
considerations (e.g., see our Theorems 2.1 and 2.15) have analogs in [4].

Our results concerning the spectral properties of the operators in question in the case of a
Lipschitz surface S are of course weaker than in the case of smooth S. Still, we estimate from
below the characteristic numbers of our operators and show that the ratios of their imaginary parts
to their real parts tend to zero. We also show that the root functions form a complete system in
H0(S) and that the corresponding Fourier series are summable by the Abel–Lidskĭı method. On a
Lipschitz surface, the Sobolev spaces Ht(S) are defined intrinsically only for |t| 6 1, and concerning
the smoothness of the root functions corresponding to nonzero eigenvalues we show that usually
these functions belong to H1(S).

As in [4], we single out the case of almost smooth surfaces S. A Lipschitz surface S is called
almost smooth if it is C∞ outside a closed subset of zero Lebesgue measure called a singular set.
This definition [3] covers the cases of surfaces with conical points, edges, etc. For an almost smooth
surface we use the results of [3] to obtain the asymptotics of the characteristic numbers of our
operators (but without an additional remainder estimate); the root functions on such surfaces S
are C∞ outside the singular set. More complete statements are given in Subsections 2.9–2.10, which
contain the main results of Section 2.

As we show in Subsections 1.6 and 2.7, our assumption that the frequency ω is not excep-
tional is equivalent to the condition that ρω2 lies outside the spectra of the first or the second
boundary value problems for the Lamé equation. We essentially remove these restrictions in Sub-
sections 1.11 and 2.11.

1. DOMAINS WITH SMOOTH BOUNDARY
1.1. Statement of the Spectral Problems

Let S be a closed (i.e., compact and without boundary) connected surface in R3 which divides
R3 \ S into a bounded domain G+ and an unbounded domain G−. In this section S is assumed
to be infinitely smooth. Let L = L(∂x) be the Lamé operator of classical elasticity. It is the 3 × 3
matrix partial differential operator with entries

Ljk = Ljk(∂x) = δjkµ∆ + (λ + µ)∂j∂k (j, k = 1, 2, 3). (1.1)

Here and in what follows ∂j = ∂/∂xj , ∆ is the scalar Laplacian, and δjk is Kronecker’s delta. The
Lamé coefficients λ and µ obey the standard inequalities

µ > 0 , 3λ + 2µ > 0. (1.2)

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 6 No. 3 1999



SPECTRAL PROBLEMS FOR THE LAMÉ SYSTEM 249

We consider the equation of free elastic vibrations

L(∂x, ω)u(x) ≡ L(∂x)u(x) + ρω2u(x) = 0 (1.3)

in G+, G−, or G+ ∪ G−. In G− the solution must satisfy the radiation conditions; we recall them
below. Here u(x) is the vector of elastic displacements, ρ = const > 0 is the density, and ω = const
is the vibration frequency. We always assume that Imω > 0:

ω = ω′ + iω′′, ω′′ > 0. (1.4)

For ω = 0, we have an equilibrium state, for real ω 6= 0, steady oscillations and for ω′′ > 0, ω′ 6= 0,
damped oscillations. Throughout this paper, when mentioning “all ω,” we always mean “all ω from
the closed upper complex half-plane.”

The Lamé operator is elliptic (see Subsection 1.5 below); therefore, the solutions (in the sense
of distributions) of (1.3) in G+ or G− are infinitely smooth.

Let n(x) be a unit vector at a point x; we denote by T = T (∂x, n(x)) the stress operator at x in
the direction of n(x). It is the 3 × 3 matrix partial differential operator with entries

Tjk = Tjk(∂x, n(x)) = λnj(x)∂k + µnk(x)∂j + µδjk∂n(x), (1.5)

where ∂n(x) is the directional derivative along n(x), i.e., n1(x)∂1 + n2(x)∂2 + n3(x)∂3. Let ν(x) be
the unit outward normal vector to S at a point x ∈ S. Further on, unless otherwise stated, we use
T = T (∂x, ν(x)) (x ∈ S).

We consider four spectral problems with spectral parameter ζ; as we have mentioned above, all
the other parameters are fixed constants.

I. Find the solutions u(x) of the Lamé system (1.3) in G+ with boundary condition

u+ + ζTu+ = 0 on S. (1.6)

II. Find the solutions u(x) of the Lamé system (1.3) in G− with radiation conditions at infinity
and boundary condition

u− = ζTu− on S. (1.7)

III. Find the solutions u(x) of the Lamé system (1.3) in R3 \ S with radiation conditions at
infinity and transmission conditions

u+ = u− and u± = ζ[Tu− − Tu+] on S. (1.8)

IV. Find the solutions u(x) of the Lamé system (1.3) in R3 \ S with radiation conditions at
infinity and transmission conditions

Tu+ = Tu− and u− − u+ = ζTu± on S. (1.9)

Let us formulate the radiation conditions for the solutions of (1.3) in G− for ω 6= 0 (cf. [22,
Chapter 3, §2], and [8, §3.2]; in [22] ω is real). If ω 6= 0, then any solution u(x) admits the
decomposition

u = u(p) + u(s), (1.10)

where u(p) and u(s) satisfy the equations

(∆ + k2
1)u

(p) = 0, rotu(p) = 0,

(∆ + k2
2)u

(s) = 0, div u(s) = 0
(1.11)
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with
k1 = ω(ρ/(λ + 2µ))1/2, k2 = ω(ρ/µ)1/2. (1.12)

As λ + µ > 0 according to (1.2), the numbers (1.12) are distinct. These potential and solenoidal
components u(p) and u(s) are defined by the formulas

u(p) = (k2
2 − k2

1)
−1(∆ + k2

2)u, u(s) = (k2
1 − k2

2)
−1(∆ + k2

1)u. (1.13)

We impose on u(p) and u(s) the standard radiation conditions for the solutions of the corresponding
Helmholtz equations by requiring that

∂ru
(p)(x) − ik1u

(p)(x) = o(r−1), ∂ru
(s)(x) − ik2u

(s)(x) = o(r−1) (1.14)

as r = |x| → ∞; here ∂r is the directional derivative along the radius vector r of x. Equations
(1.14) are the radiation conditions for the solutions of the system (1.3) for ω 6= 0. One can observe
from the integral representations given below (see Subsection 1.3) that u(p) and u(s) satisfy the
following relations at infinity. If ω is real, then

u(p)(x) = O(r−1), ∂ru
(p)(x) − ik1u

(p)(x) = O(r−2), (1.15)

u(s)(x) = O(r−1), ∂ru
(s)(x) − ik2u

(s)(x) = O(r−2) (1.16)

as r = |x| → ∞. Also (see [22, Chapter 3, §2]),

Tu(p)(x) − ik1(λ + 2µ)u(p)(x) = O(r−2), (1.17)

Tu(s)(x) − ik2µu(s)(x) = O(r−2), (1.18)

u(p)(x) · u(s)(x) = O(r−3) and u(p)(x) · u(s)(x) = O(r−3) (1.19)

as r = |x| → ∞; here T = T (∂, r0(x)), where r0(x) = r(x)/|r(x)|.
If ω′′ > 0, then we can insert the exponential factors exp(−k′′

1 r) and exp(−k′′
2 r) into the right-

hand sides of (1.15), (1.17) and (1.16), (1.18), respectively, where k′′
j = Im kj ; thus, the right-hand

sides decrease exponentially.
Finally, if ω = 0, then, speaking about the radiation conditions, we actually assume that

u(x) = O(r−1) and ∂ju(x) = O(r−2) (1.20)

as r = |x| → ∞. The term O(r−2) in the second equation can be weakened to o(r−1), but this
implies the estimate O(r−2).

1.2. Surface Potentials

We need to recall some well-known formulas and relations.
The Kupradze matrix for system (1.3) is the 3 × 3 matrix Γ(x, ω) with entries

Γjk(x, ω) =
δjkeik2|x|

2πµ|x| +
1

2πρω2
∂j∂k

eik2|x| − eik1|x|

|x| (1.21)

(see [22, Chapter 2, §1]1). For x 6= 0, its rows and columns satisfy system (1.3). We have the
estimates

|Γjk(x, ω)| 6 C|x|−1 (1.22)

1We recall once more that in [22] ω is assumed to be real. Here and below the extensions of results to complex ω are
obvious.
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uniformly over |x| 6 const, |ω| 6 const.
As ω → 0, x 6= 0, the matrix Γ(x, ω) converges to the Kelvin matrix with entries

Γjk(x) = λ′ δjk

|x| + µ′xjxk

|x|3 , (1.23)

where
λ′ =

λ + 3µ

4πµ(λ + 2µ)
, µ′ =

λ + µ

4πµ(λ + 2µ)
; (1.24)

for x 6= 0, its rows and columns satisfy system (1.3) with ω = 0. For the entries of the difference

◦
Γ(x, ω) = Γ(x, ω) − Γ(x), (1.25)

one has the estimates (see [22, Chapter 2, §1])

|
◦
Γjk(x, ω)| 6 C|ω|, |∂l

◦
Γjk(x, ω)| 6 C|ω|2, (1.26)

which are uniform over |x| 6 const, |ω| 6 const. The second derivatives of
◦
Γ(x, ω) have isolated

singularities of the order of |x|−1 at the origin. The entries of the Kupradze matrix satisfy the
radiation conditions (1.14) and consequently the stronger conditions (1.15)–(1.19), and the entries
of the Kelvin matrix satisfy the estimates (1.20). Furthermore, if F is, say, a compactly supported
continuous function, then the volume potential

U(x) = −1
2

∫
Γ(x, ω)F (y) dy (1.27)

satisfies the equation L(∂x, ω)U = F , so that

E(x, ω) = − 1
2Γ(x, ω) (1.28)

is a fundamental solution for the operator L(∂x, ω). When ω = 0, the same is true of E(x) = −1
2Γ(x)

and L(∂x) (see [22, Chapter 5, §10]).
Let us introduce the surface potentials: the single layer potential

A(ω)ϕ(x) =
∫

S

E(x, ω)ϕ(y) dSy (x ∈ R3) (1.29)

and the double layer potential

B(ω)ψ(x) =
∫

S

[T (∂y, ν(y))E(x − y, ω)]′ψ(y) dSy (x /∈ S). (1.30)

Here and below the prime ′ denotes a transposed matrix. We shall make more precise assumptions
concerning the densities ϕ and ψ later; for the time being we assume that they are infinitely smooth.

Let us also introduce the following integral operators on S:

A(ω)ϕ(x) =
∫

S

E(x − y, ω)ϕ(y) dSy (x ∈ S), (1.31)

B(ω)ψ(x) =
∫

S

[T (∂y, ν(y))E(x − y, ω)]′ψ(y) dSy (x ∈ S). (1.32)
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For ω = 0, the matrix E(x, ω) must be replaced by E(x), and we shall write A, B, A, and B instead
of A(0), B(0), A(0), and B(0), respectively.

¿From the structure of the kernel in (1.31) it follows that A(ω) is a classical, or polyhomogeneous,
ΨDO of order −1 (cf. [28] or [2, Section 1.6]). Therefore it is bounded as an operator from Ht(S)
into Ht+1(S) for all t. It is well known (see [22, Chapter 5]) that the potential A(ω)ϕ(x) has the
boundary values

A(ω)ϕ± = A(ω)ϕ. (1.33±)

If ϕ ∈ Ht(S), then A(ω)ϕ is the solution of the Dirichlet problem with the Dirichlet data from
Ht+1(S). This boundary value problem is elliptic (see below), and it is easy to conclude either from
this fact or from the structure of the kernel of the operator A(ω) that it is bounded as an operator
acting from Ht(S) into Ht+3/2(G+) and H

t+3/2
loc (G−). Here and below “loc” can be omitted for

ω′′ > 0.
The first derivatives of Aϕ(x) have the boundary values in H0(S) (cf. [22, Chapter 5]). In

particular,
TA(ω)ϕ± = ∓ 1

2ϕ + B′(ω)ϕ. (1.34±)

Here
B′(ω)ϕ(x) =

∫
S

[T (∂x, ν(x))E(x − y, ω)]ϕ(y) dSy (1.35)

is the transpose of B(ω):∫
S

B(ω)ϕ · ψ dS =
∫

S

ϕ · B′(ω)ψ dS (ϕ, ψ ∈ H0(S)). (1.36)

Both operators B(ω) and B′(ω) are singular integral operators (ΨDOs of order 0), and the integrals
in (1.32) and (1.35) must be understood in the sense of the Cauchy principal value. These operators
are bounded in all spaces Ht(S). The potential B(ω) is a bounded operator from Ht(S) into
Ht+1/2(G−) and H

t+1/2
loc (G−) for t > 0. The boundary values of B(ω)ψ exist and satisfy the

relations
B(ω)ψ± = ± 1

2ψ + B(ω)ψ. (1.37±)

Formulas (1.33±), (1.34±), and (1.37±) can be extended to ϕ, ψ ∈ H0(S) by passing to the limits
(cf. [29] and Section 2). Note also that for ψ ∈ H1(S) one has

TB(ω)ψ+ = TB(ω)ψ−. (1.38)

The proof of this formula will be recalled in Subsection 1.7.

1.3. Integral Formulas

We have to recall Green’s formulas for the Lamé operator in G+, which can be obtained by
integration by parts (cf. [22, Chapter 3, §1]). The first formula∫

G+
L(∂x)u · v dx = −

∫
G+

E(u, v) dx +
∫

S

Tu+ · v+dS (1.39)

holds, say, for u ∈ H2(G+) and v ∈ H1(G+); here and in what follows

E(u, v) = λ div u · div v + µ
∑

(∂qup + ∂puq)∂qvp . (1.40)

Formula (1.39) implies Green’s second formula∫
G+

(L(∂x)u · v − u · L(∂x)v) dx =
∫

S

(Tu+ · v+ − u+ · Tv+) dS (1.41)
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for u, v ∈ H2(S). The connectedness of the boundary is here unessential.
Let us note some obvious corollaries. If u is a solution of the homogeneous system (1.3), then

−ρω2

∫
G+

u · v dx = −
∫

G+
E(u, v) dx +

∫
S

Tu+ · v+dS, (1.42)

and if u and v are solutions of system (1.3) with, generally, different ω = ω1 and ω = ω2, then

ρ(ω2
2 − ω2

1)
∫

G+
u · v dx =

∫
S

(Tu+ · v+ − u+ · Tv+) dx. (1.43)

Formula (1.42) is valid for a solution u of (1.3) from H3/2(G+) and a function v ∈ H1(G+), and
formula (1.43) is valid for solutions from H3/2(G+) (cf. Subsection 2.3; inside the domain the
solutions are infinitely differentiable).

We can obtain an integral representation for solutions of system (1.3) belonging to H3/2(G+) in
the usual way from formula (1.43) (cf. [22, Chapter 3, §2]):

u(x) = B(ω)u+(x) −A(ω)Tu+(x). (1.44)

When x ∈ G−, the right-hand side in (1.44) vanishes. For solutions in G− belonging to H
3/2
loc (G−)

and satisfying the radiation conditions, one obtains

u(x) = A(ω)Tu−(x) − B(ω)u−(x), (1.45)

and the right-hand side vanishes for x ∈ G+.
Passing to the limit as x → S in (1.44) and (1.45) and using (1.33±) and (1.37±), we obtain the

relations
(B(ω) ∓ 1

2I)u± = A(ω)Tu± (1.46±)

on S. Similar formulas hold for ω = 0.

1.4. Reduction of Problems I–IV to Integral Equations on S for Nonexceptional ω

If the operator 1
2I − B(ω) is invertible, let us set

T+(ω) = (1
2I − B(ω))−1A(ω). (1.47)

Then (1.46+) implies
u+ = −T+(ω)Tu+, (1.48)

and Problem I is reduced by the substitution

ϕ = Tu+ (1.49)

to the equation
T+(ω)ϕ = ζϕ on S. (1.50)

Likewise, if the operator 1
2I + B(ω) is invertible, we set

T−(ω) = ( 1
2I + B(ω))−1A(ω). (1.51)

Then (1.46−) implies
u− = T−(ω)Tu−, (1.52)
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and Problem II is reduced by the substitution

ϕ = Tu− (1.53)

to the equation
T−(ω)ϕ = ζϕ on S. (1.54)

Furthermore, if u+ = u−, then from (1.46±) we obtain

u = A(ω)(Tu− − Tu+), (1.55)

and Problem III is reduced by the substitution

ϕ = Tu− − Tu+ (1.56)

to the equation
A(ω)ϕ = ζϕ on S. (1.57)

Finally, if both operators 1
2I ±B(ω) are invertible and Tu+ = Tu−, then from (1.48) and (1.52)

we obtain
u− − u+ = (T+(ω) + T−(ω))Tu±, (1.58)

and Problem IV is reduced by the substitution

ϕ = Tu± (1.59)

to the equation
T (ω)ϕ = ζϕ on S, (1.60)

where
T (ω) = T+(ω) + T−(ω) = (1

4I − B2(ω))−1A(ω); (1.61)

see also formula (1.107) below.
The values of ω for which at least one of the operators 1

2I ±B(ω) is not invertible in H0(S) will
be called exceptional. We will relate the exceptional ω with the nonuniqueness for the first and the
second boundary value problems of elasticity at the end of Subsection 1.6. We did not assume that
ω is nonexceptional when reducing Problem III to equation (1.57).

Obviously, the operators in the equations obtained above can be nonselfadjoint in L2(S) (see
Subsections 1.8–1.10), and then they can have associated functions. All the problems and equations
we have indicated relate to the eigenfunctions only. We avoid writing out the equations for the
associated functions and concentrate on the study of spectral properties of the operators T±(ω),
A(ω), and T (ω).

The problems of finding eigenfunctions for nonexceptional ω are equivalent to the equations
stated above. We shall comment on this in Subsection 1.7.

1.5. The First and the Second Boundary Value Problems. Eigenvalues; Uniqueness Theorems

The interior and exterior first (or Dirichlet) boundary value problems for system (1.3) in G±
with the boundary condition

u± = f on S, (1.62±)

respectively, will be denoted by D+(ω) and D−(ω).
The interior and exterior second (or Traction, or Neumann) boundary value problems for system

(1.3) in G± with the boundary condition

Tu± = g on S, (1.63±)
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respectively, will be denoted by N+(ω) and N−(ω).
Of course, in the case of exterior problems the radiation conditions must be imposed.
Let us briefly recall some properties of these boundary value problems; we shall need these details

later on. The Lamé operator L(∂x) is a formally selfadjoint homogeneous second order operator
with constant coefficients. It has the symbol

l(ξ) = −|ξ|2(µE + (λ + µ)Λ(ξ)), (1.64)

where Λ(ξ) is the matrix with entries ξjξk|ξ|−2 and E is the identity matrix. It is easy to check
that

Λ2(ξ) = Λ(ξ). (1.65)

It follows that l(ξ) has the inverse matrix

l−1(ξ) = − 1
µ|ξ|2

(
E − λ + µ

λ + 2µ
Λ(ξ)

)
. (1.66)

This confirms the ellipticity of the Lamé operator. Its formal selfadjointness is obvious. The symbol
−l(ξ) is a positive definite matrix: if v is a vector from C3, then

−l(ξ)v · v = µ|ξ|2|v|2 + (λ + µ)|ξ · v|2 > µ|ξ|2|v|2. (1.67)

This Hadamard–Legendre condition implies, in particular, that the operator −L(∂x) is strongly
elliptic. In turn, this implies the ellipticity of the problems D±(ω). The problems N±(ω) are
also elliptic, which can be established directly by checking the corresponding Shapiro–Lopatinskii
condition (see the English edition of [22, Chapter 1, §15]).

The natural function spaces for these problems are obvious:

For the problems D±(ω): f ∈ Ht(S), u ∈ Ht+1/2(G+) or u ∈ H
t+1/2
loc (G−).

For the problems N±(ω): g ∈ Ht(S), u ∈ Ht+3/2(G+) or u ∈ H
t+3/2
loc (G−).

In all cases we shall only consider the values t > 0; “loc” can be omitted if ω′′ > 0. Additionally,
the function u is assumed to be infinitely smooth in G± and to satisfy the radiation conditions
in G−.

We shall also use another statements of the interior problems:

L(∂x, ω)u = F in G+, u+ = 0 on S, (1.68)

L(∂x, ω)u = F in G+, Tu+ = 0 on S. (1.69)

When F = 0, (1.68) and (1.69) are the spectral boundary value problems for −L(∂x) with spectral
parameter η = ρω2.

Let us introduce the operator LD in L2(G+) acting as L(∂x) with domain

D(LD) = {u ∈ H2(G+) : u+ = 0} = H2(G+) ∩ H1
0 (G+), (1.70)

where H1
0 (G+) is the closure of C∞

0 (G+) in H1(G+). It is well known that LD is a closed densely
defined selfadjoint operator with compact resolvent. Moreover, −LD is positive by virtue of the
G̊arding inequality

ε‖u‖2
1,G+ 6 −(LDu, u)G+ (u ∈ D(LD)) (1.71)

with a positive ε. In turn, the G̊arding inequality can be obtained, e.g., using the Friedrichs in-
equality

‖u‖0,G+ 6 C‖ gradu‖0,G+ (u ∈ H1
0 (G+)), (1.72)
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Korn’s first inequality (cf., e.g., [27, Chapter 1])

‖ gradu‖2
0,G+ 6 1

2

∫
G+

∑
|∂qup + ∂puq|2 dx (u ∈ H1

0 (G+)), (1.73)

Green’s formula (1.39) and the identity (see [22, Chapter 3, §1])

E(u, u) =
3λ + 2µ

3
|div u|2 +

µ

2

∑
p 6=q

|∂qup + ∂puq|2 +
µ

3

∑
p,q

|∂pup − ∂quq|2, (1.74)

in which the right-hand side majorizes the integrand on the right-hand side in (1.73) in view of the
elementary inequality 3|a| 6 |a + b + c| + |a − b| + |a − c|.

We also introduce the operator LN in L2(G+) acting as L(∂x) with domain

D(LN ) = {u ∈ H2(G) : Tu+ = 0}. (1.75)
This is again a closed densely defined selfadjoint operator with compact resolvent. This operator is
nonnegative by virtue of Green’s formula (1.39) and identity (1.74). One can obtain the analog of
(1.71) in the form

ε‖u‖2
1,G+ 6 −(LNu, u)G+ + ‖u‖2

0,G+ (u ∈ D(LN )), (1.76)

using, e.g., Green’s formula (1.39), identity (1.74), and Korn’s second inequality (cf. [27, Chapter 1])
for functions u ∈ H1(G+):

‖ grad u‖2
0,G+ 6 C

(∫
G+

∑
|∂qup + ∂puq|2 dx + ‖u‖2

0,G+

)
. (1.77)

(Inequalities (1.71) and (1.76) can also be obtained by means of the Fourier transform.)
Thus, the spectrum of −LD consists of isolated positive eigenvalues of finite multiplicity. Num-

bering them in nondecreasing order with the account of multiplicities, we obtain a sequence
{ηj(−LD)}∞1 with the asymptotics ηj(−LD) ∼ const j2/3. Similarly, the spectrum of −LN con-
sists of isolated nonnegative eigenvalues of finite multiplicities, and the corresponding sequence
{ηj(−LN )}∞1 has the same asymptotics ηj(−LN ) ∼ const j2/3. See [35].

The eigenfunctions of the operators LD and LN belong to C∞(G
+
) in view of the ellipticity of

the problems (1.68) and (1.69) and the infinite smoothness of the boundary.
Obviously, the homogeneous forms of the problems (1.68) and D+(ω) coincide, and therefore the

uniqueness for D+(ω) occurs if and only if ρω2 differs from all eigenvalues of the operator −LD. In
particular, we have the uniqueness for all nonreal ω and ω = 0. Similarly, we have the uniqueness
for N+(ω) if and only if ρω2 differs from all eigenvalues of the operator −LN . In particular, we
have the uniqueness for all nonreal ω.

For the exterior problems D−(ω) and N−(ω), the uniqueness holds for all ω (with ω′′ > 0). This
can be checked using a formula of the type (1.42) for the domain

G−
R = G− ∩ ER, where ER = {x : |x| < R} (1.78)

with R such that G
+ ⊂ ER:

−ρω2

∫
G−

R

|u|2 dx = −
∫

G−
R

E(u, u) dx −
∫

S

Tu− · u−dS +
∫

SR

Tu · u dS, (1.79)

where SR = {x : |x| = R}. The proof of the uniqueness for real values of ω can be found in [22,
Chapter 3, §2]. We shall use similar reasoning when proving that our operators are dissipative (see
Subsections 1.8–1.9 below). If ω is nonreal, then, taking the limit as R → ∞ in (1.79) for the
solution with u− = 0 or Tu− = 0, we get

ρω2

∫
G−

|u|2 dx =
∫

G−
E(u, u) dx, (1.80)

since the integral over the sphere SR tends to zero. It follows that here both integrals vanish for
pure imaginary ω (when they are of different sign) as well as for not pure imaginary ω (when ω2 is
not real). Thus, the only solution of the homogeneous problems is u ≡ 0.
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1.6. The Operators A(ω) and 1
2I ± B(ω) and Their Invertibility

We start with the following

Proposition 1.1. The principal symbol of A(ω) is a Hermitian negative definite matrix. In
particular, A(ω) is an elliptic pseudodifferential operator of order −1, it is Fredholm as an operator
from Ht(S) into Ht+1(S) and has index zero.

Proof. We compute the principal symbol using a lemma from [3]. Let x0 be a point of S. We
shift the origin of the coordinate system in R3 to x0 and rotate the axes in such a way that x3 takes
the direction of the exterior (for definiteness) normal to S at this point. Let x3 = X(x′) = X(x1, x2)
be the equation of S near x0. We define the new coordinates x̃j (j = 1, 2, 3) rectifying S:

x̃1 = x1, x̃2 = x2, x̃3 = x3 − X(x′). (1.81)

For simplicity, below we omit the tildes in the notation.
The complete and the principal symbol of the operator (1.27) in the old coordinates is l−1(ξ)

(see (1.66)). Dividing it by 2π and integrating over the ξ3-axis, we obtain the principal symbol
σA(0, ξ′) of the operator A in the new coordinates at the point x′ = 0:

σA(0, ξ′) =
1
2π

∫ ∞

−∞
l−1(ξ) dξ3 =

1
2πµ

∫ ∞

−∞

(
λ + µ

λ + 2µ

1
|ξ|2 Λ(ξ) − 1

|ξ|2 E

)
dξ3,

where ξ′ = (ξ1, ξ2). Using the easily verified relations∫ ∞

−∞

1
|ξ|2 dξ3 =

π

|ξ′| ,
∫ ∞

−∞

ξ2
3

|ξ|4 dξ3 =
π

2|ξ′| ,
∫ ∞

−∞

1
|ξ|4 dξ3 =

π

2|ξ′|3 ,

we obtain

σA(0, ξ′) =
1

2µ|ξ′|

(
λ + µ

2(λ + 2µ)

(
Λ(ξ′) 0

0 1

)
− E

)
. (1.82)

This matrix is Hermitian and has the negative eigenvalues

− 1
2µ|ξ′| and (double) − λ + 3µ

4(λ + 2µ)µ|ξ′| . (1.83)

This implies, in particular, that A is elliptic, so that A(ω) is Fredholm as an operator acting from
Ht(S) into Ht+1(S), with index independent of t. Since the principal symbol is Hermitian, the
index is 0 for all t.

Proposition 1.2. The operator A(ω):Ht(S) → Ht+1(S) is invertible if and only if the homo-
geneous problem D+(ω) has no nontrivial solutions. For other values of ω,

KerA(ω) = {Tu+ : L(∂x, ω)u = 0 in G+, u+ = 0}. (1.84)

In particular, the dimension of the null space (1.84) is equal to the dimension of the space of
solutions of the homogeneous problem D+(ω) and to the dimension of the eigenspace of the operator
−LD corresponding to the eigenvalue ρω2.

Proof. Let u be a nontrivial solution of the problem D+(ω). Then (1.46+) implies that
A(ω)Tu+ = 0.

Conversely, let A(ω)ϕ = 0. We set u = −A(ω)ϕ. Then u± = 0, and since the solution of the
exterior problem D−(ω) is unique, we have u = 0 in G− and Tu− = 0. Now (1.34±) gives Tu+ = ϕ.
It remains to note that u+ and Tu+ can vanish simultaneously if and only if the solution u of the
homogeneous problem D+(ω) is trivial, which can be seen, e.g., from (1.44).

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 6 No. 3 1999



258 M. S. AGRANOVICH et al.

Proposition 1.3. The operators 1
2I ± B(ω) have Hermitian principal symbols with positive

determinants, so they are elliptic ΨDOs of order zero and Fredholm operators of index zero in all
Ht(S).

Proof. It is shown in [22, Chapter 2, §4] that

(T (∂x, n(x))Γ(x))jk = µ(λ′ − µ′)
nj(x)xk − nk(x)xj

|x|3

+
(

µ(µ′ − λ′)δjk − 6µµ′xjxk

|x|2
) 3∑

l=1

nl(x)
xl

|x|3 . (1.85)

We also have the estimates (1.26) for
◦
Γ(x, ω) = Γ(x, ω)−Γ(x). Since the normal vector is orthogonal

to tangential vectors, on the surface S we have∣∣∣∣ ∑
l

νl(y)
xl − yl

|x − y|

∣∣∣∣ 6 C|x − y|. (1.86)

In view of (1.28), the principal singular part of the kernel of the operator B(ω) has the entries

µ(λ′ − µ′)
νk(y)(xj − yj) − νj(y)(xk − yk)

2 |x − y|3 . (1.87)

Here, according to (1.24),

λ′ − µ′ =
1

2π(λ + 2µ)
> 0. (1.88)

Let us now use the same coordinate system as in the calculation of the symbol of A(ω). Since

xj

|x′|3 = −∂j
1
|x′| (j = 1, 2)

and the kernel (2π|x′ − y′|)−1 corresponds to the principal symbol |ξ′|−1 (see the calculation of the
principal symbol of an operator of the type A for the Laplace equation, e.g., in [1, §36]), we see
that the principal symbol of B(ω) is

σB(ξ′) =
πµ(λ′ − µ′)i

|ξ′|

(
0 0 −ξ1
0 0 −ξ2
ξ1 ξ2 0

)
. (1.89)

It follows that

det(1
2E ± σB(ξ′)) =

1
8

(
1 − µ2

(λ + 2µ)2

)
> 0 (1.90)

(cf. [22, Chapter 6, §3]). Hence 1
2I ±B(ω) are elliptic operators of order zero, and they have index

zero since their principal symbols are Hermitian.

Corollary 1.4. The assertion of Proposition 1.3 remains true for the operators 1
2I±B∗(ω) and

1
2I ± B′(ω).

Proposition 1.5. The operator 1
2I+B′(ω) in Ht(S) is invertible if and only if the homogeneous

problem D+(ω) has no nontrivial solutions. For other values of ω,

Ker(1
2I + B′(ω)) = {Tu+ : L(∂x, ω)u = 0 in G+, u+ = 0} = Ker A(ω). (1.91)

Proof. Since ind(1
2I + B′) = 0, it suffices to prove the first equality in (1.91), but it is already

known: see [22, Chapter 7, §2].

Obviously, the operators 1
2I +B(ω) and 1

2I +B∗(ω) are invertible in Ht(S) whenever 1
2I +B′(ω)

is invertible.
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Proposition 1.6. The operator 1
2I−B(ω) in Ht(S) is invertible if and only if the homogeneous

problem N+(ω) has no nontrivial solutions. For other values of ω,

Ker(1
2I − B(ω)) = {u+ : L(∂x, ω)u = 0 in G+, Tu+ = 0}, (1.92)

so that the dimension of the null space (1.92) is equal to the dimension of the space of solutions
of the homogeneous problem N+(ω) and to the dimension of the eigenspace of the operator −LN

corresponding to the eigenvalue ρω2.

Proof. Since ind(1
2I − B) = 0, it suffices to note that (1.92) is proved in [22, Chapter 7, §2].

See also Subsection 2.5, where we check (1.92) for Lipschitz domains.

The operators 1
2I − B′(ω) and 1

2I − B∗(ω) are invertible in Ht(S) whenever 1
2I − B(ω) is

invertible.

Remark 1.7. The spaces Ker A(ω), Ker(1
2I −B(ω)), and Ker(1

2I + B′(ω)) coincide with their
complex conjugates, i.e., are invariant with respect to the mapping ϕ 7→ ϕ.

This follows from (1.84), (1.91), and (1.92), since all exceptional values of ω are real.
Making the definition of exceptional ω given at the end of Subsection 1.4 more precise, we will

call a frequency ω exceptional with respect to the problem D+ if ρω2 = ηj(−LD) for some j, and
exceptional with respect to the problem N+ if ρω2 = ηj(−LN ) for some j. The fact that ω is not
exceptional with respect to the problem D+ is equivalent to the invertibility of the operators A(ω),
1
2I +B(ω), and 1

2I +B′(ω), and the fact that ω is not exceptional with respect to the problem N+

is equivalent to the invertibility of the operators 1
2I − B(ω) and 1

2I − B′(ω).

1.7. Formulas for Solutions of the Main Boundary Value Problems and Some Other Equalities

We need to recall how to construct the solutions of the main boundary value problems for
nonexceptional ω using potentials (cf. [22, Chapter 7]).

Let ω be nonexceptional with respect to the problem D+. Then the solution of the nonhomoge-
neous problem D+(ω) can be constructed as a double layer potential u = B(ω)ψ. Formula (1.37+)
gives

u = B(ω)(1
2I + B(ω))−1u+. (1.93)

Another possibility is to seek the solution as a single layer potential u = A(ω)ϕ, which leads to

u = A(ω)(A(ω))−1u+. (1.94)

A similar formula gives the solution of the problem D−(ω):

u = A(ω)(A(ω))−1u−. (1.95)

Also, we can seek the solution of the problem N−(ω) as a single layer potential u = A(ω)ϕ;
formula (1.34−) gives

u = A(ω)(1
2I + B′(ω))−1Tu−. (1.96)

Now let ω be nonexceptional with respect to the problem N+. Then the solution of the problem
N+(ω) can be constructed as a single layer potential u = A(ω)ϕ. By (1.34+), we obtain

u = −A(ω)(1
2I − B′(ω))−1Tu+. (1.97)

Also, the solution of the problem D−(ω) can be constructed as a double layer potential u =
B(ω)ψ. By (1.37−), we obtain

u = −B(ω)(1
2I − B(ω))−1u−. (1.98)
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To complete the picture, let us recall that the method of integral equations allows one to construct
the solutions of the main exterior and (under corresponding orthogonality conditions) interior
boundary value problems for exceptional ω as well, see [22, Chapter 7]; cf. also Subsection 1.11
below.

Now let us comment on the equivalence of Problems I–IV for the eigenfunctions to the corre-
sponding equations obtained in Subsection 1.4 (for ω such that these equations make sense). If ϕ is
a solution of (1.50), then the corresponding solution of Problem I is reconstructed as the solution
of the problem N+(ω) with Tu+ = ϕ. If ϕ is a solution of (1.54), then the corresponding solution
of Problem II is reconstructed as the solution of the problem N−(ω) with Tu− = ϕ. If ϕ is a
solution of (1.57), then the corresponding solution of Problem III is reconstructed as u = A(ω)ϕ.
Finally, if ϕ is a solution of (1.60), then the corresponding solution of Problem IV is reconstructed
as the solution of the problems N±(ω) with Tu± = ϕ. It is easy to see that in all the cases the
correspondence is bijective. The question of smoothness is solved trivially: all the eigenfunctions
(and in general all the root functions) are infinitely smooth due to the ellipticity of boundary value
problems and operators under consideration and the infinite smoothness of S.

We shall also need the following two statements (cf. [13, p. 89], for more general systems).

Proposition 1.8. For all ω,

B(ω)A(ω) = A(ω)B′(ω). (1.99)

Proof. Let ω be nonreal, so that the operator A(ω) is invertible (see Proposition 1.2). From
(1.48) and (1.47) we have

Tu+ = −A−1(ω)(1
2I − B(ω))u+. (1.100)

On the other hand, for u = A(ω)ϕ we have

u+ = A(ω)ϕ and Tu+ = −(1
2I − B′(ω))ϕ

(see (1.34+)), and therefore,

Tu+ = −(1
2I − B′(ω))A−1(ω)u+. (1.101)

Comparing (1.100) with (1.101), we obtain, since u+ is arbitrary,

(1
2I − B(ω))A(ω) = A(ω)(1

2I − B′(ω)). (1.102)

Instead, we can now construct two representations of Tu− in terms of u− and obtain

(1
2I + B(ω))A(ω) = A(ω)(1

2I + B′(ω)). (1.103)

Both (1.102) and (1.103) imply (1.99). This formula can now be extended to real ω by a passage
to the limit.

Proposition 1.9. Let ω be nonexceptional with respect to the problem D+. Then

TB(ω)ψ+ = TB(ω)ψ− = A−1(ω)(B2(ω) − 1
4I)ψ. (1.104)

The first of these equalities is valid for all ω.

Proof (cf. [31]). Let us consider the functions

u = A(ω)A−1(ω)(1
2I + B(ω))ψ and v = B(ω)ψ,
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where ψ ∈ H1(S). According to (1.33+) and (1.37+), they are solutions of the same problem D+(ω),
and, due to the assumption of the Proposition, coincide. Thus Tu+ = Tv+. With the account of
(1.34+) we get

(− 1
2I + B′(ω))A−1(ω)(1

2I + B(ω))ψ = TB(ω)ψ+. (1.105)

Likewise, the functions

u = A(ω)A−1(ω)(− 1
2I + B(ω))ψ and v = B(ω)ψ

are solutions of the same problem D−(ω) by (1.33−) and (1.37−). Thus, Tu− = Tv−, and from
(1.34−) we obtain

(1
2I + B′(ω))A−1(ω)(− 1

2I + B(ω))ψ = TB(ω)ψ−. (1.106)

It remains to apply (1.102)–(1.103).
The first equality in (1.104) can be extended to ω exceptional with respect to the problem D+

by passing to the limit as ω′′ → 0.

Corollary 1.10. For the operator (1.61) we have

T−1(ω)ψ = −TB(ω)ψ+ = −TB(ω)ψ−. (1.107)

Generalizations to Lipschitz domains will be indicated in Subsections 2.5 and 2.6.

1.8. Spectral Properties of Operator A(ω)

We start with simple remarks on operators in a Hilbert space H.
For any bounded operator T in H we have

T ∗ = (T )′ = T ′, (1.108)

where T v = T v is the complex conjugate of T and T ′ is the transpose of T . If T is an integral
operator, then T is obtained by replacing its kernel by the complex conjugate kernel.

The real and imaginary parts of a nonselfadjoint bounded operator T in H are defined as

Re T =
1
2
(T + T ∗) and Im T =

1
2i

(T − T ∗), (1.109)

where T ∗ is the adjoint of T . An operator T is called dissipative if Im T > 0, i.e., Im(T ϕ, ϕ) > 0.
Such an operator does not have associated vectors corresponding to real eigenvalues (see [14, Chap-
ter V, §1]).

Theorem 1.11. 1. For all values of ω the operator A(ω) is (complex ) symmetric:

A(ω)′ = A(ω), A(ω)∗ = A(ω). (1.110)

It is selfadjoint if and only if ω′ = 0.
2. Im A(ω) is an operator of order −∞ for real nonzero ω and of order not greater than −3 for

nonreal not pure imaginary ω.
3. For ω′ < 0 the operator A(ω) is dissipative; more precisely,

Im(A(ω)ϕ, ϕ)S > 0 if A(ω)ϕ 6= 0. (1.111)

For ω′ > 0 the same is true of the operator −A(ω).

Proof. 1. The kernel E(x − y, ω) of A(ω) is a symmetric matrix depending on |x − y| alone.
Thus the operator conjugate to A(ω) is obtained from A(ω) by taking the complex conjugate kernel,
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i.e., by replacing ω by ω and ikj by −ikj in the exponents. When ω′ = 0, the kernel is real and
symmetric. When ω′ 6= 0, it is only symmetric.

2. For real ω, the kernel of the operator ImA(ω) is obtained by replacing eikj |x−y|/|x− y| in the
kernel of A(ω) by the infinitely smooth functions sin(kj |x− y|)/|x− y|. If ω is neither real nor pure
imaginary, the entries of the kernel of ImA(ω) have the expansions

const |x − y| + const ∂j∂k|x − y|3 + . . .

(since k2
j /ω2 are real), and it follows (see [28] or [2, Section 1.6]) that this operator is of order not

greater than −3.
3. Let u = A(ω)ϕ. We use formulas (1.42) with v = u and (1.79). Adding them, we obtain

−ρω2

∫
ER

|u|2 dx = −
∫

ER

E(u, u) dx −
∫

S

ϕ · A(ω)ϕ dS +
∫

SR

Tu · u dS. (1.112)

If ω is not real, then, by virtue of the radiation conditions, the integral over SR tends to zero as
R → ∞. Separating the imaginary parts of (1.112) and taking the limit, we obtain

Im(A(ω)ϕ, ϕ)S = −2ρω′ω′′
∫

R3
|u|2 dx. (1.113)

This gives (1.111) if ω′ω′′ < 0 and the similar inequality for −A(ω) if ω′ω′′ > 0. Also, if the
left-hand side of (1.113) vanishes, then u = 0 everywhere, and hence ϕ = Tu− − Tu+ = 0.

Now let ω be real and nonzero. Using (1.112) and the corollaries of the radiation conditions, we
get

Im(A(ω)ϕ, ϕ)S = −
∫

SR

(k1(λ + 2µ)|u(p)|2 + k2µ|u(s)|2) dS + O(R−1). (1.114)

The right-hand side has a finite limit as R → ∞, since the left-hand side is independent of R. If
the limit differs from zero, then its sign is opposite to the sign of ω. If the limit is zero, then∫

SR

|u(p)|2ds → 0 and
∫

SR

|u(s)|2ds → 0, (1.115)

and by the well-known theorem for solutions of the Helmholtz equation (e.g., see [8, §3.3]) we
conclude that u(p) and u(s) vanish in G−. Then u− = A(ω)ϕ = 0.

Let us also note that due to (1.111) and (1.84), for ω′ 6= 0 the operator A(ω) has the (unique)
real eigenvalue at 0 if and only if ω is exceptional with respect to the problem D+. Since A(ω) or
−A(ω) is dissipative, the corresponding root space contains only eigenfunctions and is, as we have
seen, of finite dimension.

If ω is not exceptional with respect to the problem D+, then A(ω) has an unbounded inverse
of order 1. If ω is exceptional with respect to the problem D+, then KerA(ω) can be eliminated
by adding to A(ω) a finite-dimensional operator without perturbing the root functions and other
eigenvalues. Such a perturbation does not change the asymptotics of the eigenvalues and plays no
role in the questions as to whether the root functions are complete or have some properties of a
basis. The operator A−1(ω) can be made selfadjoint if ω′ = 0. If ω′ 6= 0, we can assume that it
differs from a selfadjoint operator (namely, from its real part) by an operator of order −∞ if ω is
real, and by an operator of order −1 if ω is not real.

Together with the ellipticity established in Subsection 1.6, this leads to the following results.
Let us number the eigenvalues of A(ω), with the account of multiplicities, starting from the zero
eigenvalue (if it exists) and further in the nonincreasing order of moduli of nonzero eigenvalues.
The characteristic numbers, i.e., the inverses of nonzero eigenvalues ζj = ζj(A(ω)), will be denoted
by zj = zj(A(ω)). Since the principal symbol of A(ω) is a negative definite matrix (see (1.83)), the
characteristic numbers tend to −∞.
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Theorem 1.12. For all ω,

zj(A(ω)) = −c(A)j1/2 + O(1) as j → ∞ (1.116)

with a positive constant c(A) independent of ω. In addition, if ω′ 6= 0,

| Im zj | = O(j−h) as j → ∞, (1.117)

where h is an arbitrarily large positive number for real ω, and h = 1/2 for nonreal ω. The signs of
Im zj coincide with the sign of ω′. If |ω′| < ω′′, then the Re zj are negative.

Proof. In the case of a selfadjoint operator A(ω), formula (1.116) follows from the results of
[17]. Moreover, the eigenvalues of the principal symbol have constant multiplicities; thus it admits a
smooth diagonalization, and the result essentially follows from [16]. If A(ω) is nonselfadjoint, then
the asymptotics (1.116) is first obtained for the characteristic numbers of its real part, and then
for the characteristic numbers of A(ω) using a theorem from [24]. The estimate (1.117) is obtained
very easily: we use the invertibility of operators sufficiently close in norm to an invertible one, see
[1]. The statement about the signs of Im zj follows from Statement 3 of Theorem 1.11. The fact
that Re zj are negative for |ω′| 6 ω′′ follows from the formula

Re
∫

S

A(ω)ϕ · ϕ dS = −
∫

R3
E(u, u) dx + ρ((ω′)2 − (ω′′)2)

∫
R3

|u|2 dx, (1.118)

which in turn follows from (1.112).

If ω′ = 0, then A(ω) is selfadjoint, and its eigenfunctions form an orthonormal basis {gj}∞j=1 in
L2(S). This basis remains an unconditional basis in all spaces Ht(S). Moreover, we can introduce an
inner product in Ht(S) in which this basis remains orthogonal. In the Fourier series of an arbitrary
function g,

g =
∞∑

j=1

cjgj , cj = (g, gj)S , (1.119)

the rate of decay of the Fourier coefficients grows with the smoothness of g, and for an infinitely
smooth g they decay in absolute value faster than any negative power of j.

Theorem 1.13. If ω′ 6= 0, then the root functions of the operator A(ω) are complete in all
Ht(S). Moreover, there exists a system {gj}∞j=1 of root functions that is an unconditional basis
with parentheses simultaneously in all Ht(S).

We refer the reader to [2] and references therein for terminology and theorems on nonselfadjoint
operators. We only recall that the completeness of a set of vectors in a topological space means
that their finite linear combinations are dense. Note also that, instead of (1.119), now we have

g =
∞∑

l=1

[ jl+1∑
j=jl+1

cjgj

]
, cj = (g, hj)S , (1.120)

where the gj belong to the root space corresponding to the eigenvalue ζj . Here {hk} is the sequence
of functions biorthogonal to {gj}, which is composed of the root functions of the operator A(ω)
(adjoint to A(ω)), and {jl} is a certain increasing sequence of positive integers independent of g.
The square brackets in (1.120) single out the terms corresponding to close characteristic numbers.
The series in l converges unconditionally, i.e., it admits any permutation of terms.

Remark 1.14. The statement of Theorem 1.13 can be supplemented with the information on
the control over the positions of the brackets in (1.120) and the rate of convergence of the series
in l. We refer the interested reader to [2]. Note only that in the case of a real ω, when the operator
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is infinitely close to a selfadjoint one, one can consider the difference of the series (1.120) and
a similar series with parentheses in the eigenfunctions of Re A(ω), and this difference converges
rapidly in Ht(S) for g ∈ Ht(S). In the abstract theorems for unbounded operators T , from which
these facts follow, the essential role is played by the quantity p(1 − q), where p is the exponent in
the eigenvalue asymptotics of Re T and q is the order of subordination of T −Re T to Re T . In our
case T = A−1(ω), p = 1/2, and q = −1 or −∞, so that p(1 − q) = 1 (the good case in which ω is
neither real nor pure imaginary) or p(1 − q) = −∞ (the very good case of real nonzero ω).

Similar remarks pertain to Theorems 1.18 and 1.22 below.

1.9. Spectral Properties of Operators T±(ω)

In this subsection we assume that ω is not exceptional with respect to the problem N+ when
considering the operator T+(ω) and with respect to the problem D+ when considering the operator
T−(ω).

Theorem 1.15. 1. The operators T±(ω) are symmetric for all values of ω:

(T±)′(ω) = T±(ω), (T±)∗(ω) = T±(ω). (1.121)

The operator T+(ω) is selfadjoint if and only if ω′ω′′ = 0; the operator T−(ω) is selfadjoint if and
only if ω′ = 0.

2. For real nonzero ω, the imaginary part of T−(ω) is of order −∞. For ω′ω′′ 6= 0, the imaginary
parts of T+(ω) and T−(ω) are of order not greater than −3.

3. For ω′ < 0 the operator T−(ω) is dissipative, and moreover,

Im(T−(ω)ϕ, ϕ)S > 0 if ϕ 6= 0. (1.122)

For ω′ > 0 the same is true of the operator −T−(ω). Similar statements hold for T+(ω) with
nonreal ω.

Proof. 1. By (1.42) with v = u and (1.48) with the account of

Tu+ = Tu+, (1.123)

separating the imaginary parts, we obtain

Im(T+(ω)ϕ, ϕ) = −2ω′ω′′ρ
∫

G+
|u|2dx, (1.124)

where ϕ = Tu+ is arbitrary. We see that T+(ω) is selfadjoint if and only if ω′ω′′ = 0. For T−(ω)
with ω 6= 0 we use (1.79). If ω′′ > 0, we obtain

Im(T−(ω)ϕ, ϕ)S = −2ω′ω′′ρ
∫

G−
|u|2dx (1.125)

with arbitrary ϕ = Tu− and conclude that T−(ω) is selfadjoint if and only if ω′ = 0. If ω′′ = 0, we
obtain

Im(T−(ω)ϕ, ϕ)S = −
∫

SR

(k1(λ + 2µ)|u(p)|2 + k2µ|u(s)|2) dS + O(R−1) (1.126)

(cf. (1.114)) and conclude that T−(ω) is nonselfadjoint. Furthermore, by (1.102) and (1.103) with
the account of (1.110), we obtain

((1
2I ± B(ω))−1A(ω))′ = A(ω)(1

2I ± B′(ω))−1 = (1
2I ± B(ω))−1A(ω).
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In particular, we see that T−(0) is selfadjoint.
2. By the second equality in (1.121),

Im T±(ω) = 1
2i (T

±(ω) − T±(ω)). (1.127)

Here

T−(ω)−T−(ω) = (1
2I +B(ω))−1(A(ω)−A(ω))+ ((1

2I +B(ω))−1 − (1
2I +B(ω))−1)A(ω), (1.128)

and

(1
2I + B(ω))−1 − (1

2I + B(ω))−1 = (1
2I + B(ω))−1(B(ω) − B(ω))(1

2I + B(ω))−1. (1.129)

It is easy to check that the operator B(ω)−B(ω) is of order −∞ for a real nonzero ω, and of order
not greater than −2 for ω′ω′′ 6= 0. Thus, (1.127)–(1.129) imply our statement for T−(ω). The case
of T+(ω) is treated similarly.

3. These statements follow from (1.124)–(1.126).

Proposition 1.16. The principal symbols of the operators T±(ω) are Hermitian negative defi-
nite matrices. In particular, T±(ω) are elliptic operators of order −1 with index zero.

Proof. We denote by a(ξ′), b(ξ′), and c(ξ′) the principal symbols of the operators A(ω), B(ω),
and 1

2I ± B(ω), respectively, at a point on S (see Subsection 1.6). These matrices are Hermitian,
a(ξ′) is negative definite, and c(ξ′) is positive definite. The principal symbol of B′(ω) is b′(−ξ′), it
coincides with b(ξ′), and it follows from (1.99) that a(ξ′) and b(ξ′) commute (which, of course, can
also be checked directly). Hence c−1(ξ′) and a(ξ′) also commute, and c−1(ξ′)a(ξ′) is a Hermitian
matrix. For any vector v = (v1, v2)′ 6= 0, we have

c−1(ξ′)a(ξ′)v · v = a(ξ′)(c−1/2v) · (c−1/2v) < 0,

and hence c−1(ξ′)a(ξ′) is negative definite.

We can now see that the spectral properties of the operators T±(ω) are very close to those
of the operator A(ω). In particular, T+(ω) has eigenvalue zero for the same ω as A(ω), and the
eigenvalues of T−(ω) are always nonzero (due to our assumption of invertibility of 1

2I + B(ω)). If
0 is an eigenvalue of A(ω), then KerT+(ω) = Ker A(ω). No other real eigenvalues are possible if
T+(ω) or T−(ω) is nonselfadjoint.

Let us number the eigenvalues as in Subsection 1.8. Let zj(T±(ω)) be the characteristic numbers
of T±(ω). We have the following results.

Theorem 1.17. For all ω,

zj(T±(ω)) = −c(T±)j1/2 + O(1) as j → ∞ (1.130)

with positive constants c(T±) independent of ω. In addition, if the operators T±(ω) are nonselfad-
joint, then

| Im zj | = O(j−h) as j → ∞, (1.131)

where h = 1/2 for ω′ω′′ 6= 0, and h is an arbitrarily large positive number for real nonzero ω in the
case of the operator T−(ω). If ω′ω′′ 6= 0 for T+(ω) or ω′ 6= 0 for T−(ω), then the signs of Im zj

coincide with the sign of ω′. If |ω′| < ω′′, then Re zj are all negative.

Theorem 1.18. If ω′ω′′ 6= 0, then the root functions of the operator T+(ω) are complete in
all Ht(S). Moreover, there exists a system {gj}∞j=1 of root functions that is an unconditional basis
with parentheses simultaneously in all Ht(S). The same is true of T−(ω) if ω′ 6= 0.
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1.10. Spectral Properties of Operator T (ω)

Here we assume that ω is not exceptional with respect to both interior problems. The spec-
tral properties of the operator T (ω) are similar to those of A(ω) and T−(ω). Theorem 1.19 and
Proposition 1.20 are obtained below as direct applications of the results of Subsection 1.9 and
formula (1.61). Theorems 1.21 and 1.22 follow as corollaries.

Theorem 1.19. 1. The operator T (ω) is symmetric:

T ′(ω) = T (ω), T ∗(ω) = T (ω). (1.132)

It is selfadjoint if and only if ω′ = 0.
2. The imaginary part of T (ω) is of order −∞ for real nonzero ω and of order not greater than

−3 for nonreal and not pure imaginary ω.
3. For ω′ < 0 the operator T (ω) is dissipative, and moreover,

Im(T (ω)ϕ, ϕ)S > 0 if ϕ 6= 0. (1.133)

For ω′ > 0 the same is true of the operator −T (ω).

Proposition 1.20. The principal symbol of T (ω) is a Hermitian negative definite matrix.

We number the characteristic numbers of T (ω) as above.

Theorem 1.21. For all admissible ω, the characteristic numbers of T (ω) have the asymptotics

zj(T (ω)) = −c(T )j1/2 + O(1) as j → ∞ (1.134)

with a positive constant c(T ) independent of ω. In addition, if ω′ 6= 0, then

| Im zj | = O(j−h) as j → ∞, (1.135)

where h is an arbitrarily large positive number for real ω, and h = 1/2 for nonreal ω. If ω′ 6= 0,
then the signs of Im zj(T (ω)) coincide with the sign of ω′. If |ω′| < ω′′, then Re zj(T (ω)) < 0 for
all j.

Theorem 1.22. If ω′ 6= 0, then the root functions of the operator T (ω) are complete in all
Ht(S). Moreover, there exists a system {gj}∞j=1 of root functions that is an unconditional basis
with parentheses simultaneously in all Ht(S).

1.11. Problems I–IV for Eceptional ω

Problem III did not cause any difficulties from the very beginning; it has already been considered
for all ω with Imω > 0.

Let us consider Problem I. So far, we assumed ω to be nonexceptional with respect to the
problem N+. If this condition is violated but ω is nonexceptional with respect to the problem D+,
then Problem I can be reduced to the equation

Θ+(ω)ϕ = zϕ, (1.136)

where
Θ+(ω) = A−1(ω)(1

2I − B(ω)), ϕ = u+, z = ζ−1. (1.137)

This operator is an elliptic ΨDO of order 1 with compact resolvent, selfadjoint for ω′ω′′ = 0. It is
easy to check (cf. [1, 2]) that it differs from its real part by an operator of order −1 for the other ω
in the upper half-plane. The spectral results are similar to those obtained in Subsection 1.9. The
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operator Θ+(ω) has the eigenvalue zero, and therefore the “multi-valued inverse operator” T+(ω)
has the “eigenvalue” ∞.

However, one cannot exclude the case of the “double resonance,” when for a given ω both
problems D+(ω) and N+(ω) have nontrivial solutions.

In this case we can propose the following modification of the problem. Let us replace ζ by 1/z

in (1.6), multiply this boundary condition by z, replace z by z̃ + h, set ζ̃ = 1/z̃, multiply the result
by ζ̃, and, finally, replace ζ̃ by ζ. We arrive at the boundary condition

u+ + ζ(Tu+ + hu+) = 0. (1.138)

The role of the problem N+(ω) is now played by the interior problem with the boundary condition

Tu+ + hu+ = g, (1.139)

and it is sufficient to choose a number h in such a way that this boundary value problem will
be uniquely solvable. Since we have added only a lower-order term to the boundary condition,
the index of problem (1.3), (1.139) is still zero, and we should only take care of the uniqueness.
Formula (1.42) with v = u shows that it suffices to take a nonreal h. Formula (1.46+) shows that
the modified Problem I is reduced to the equation

−ζ(B(ω) + hA(ω) − 1
2I)ϕ = A(ω)ϕ, (1.140)

where ϕ = Tu+ + hu+. The operator on the left-hand side still has index zero, and its null space is
trivial for nonreal h. (Indeed, if ϕ belongs to this null space, then we consider u = B(ω)ϕ+hA(ω)ϕ;
for this function we have u− = 0, u ≡ 0 in G−, Tu− = 0, u+ = ϕ, and Tu+ = hϕ (by the formulas
of Subsection 1.2). Now, separating the imaginary parts is Green’s formula (1.42) with v = u, we
see that ϕ = 0.) Multiplying (1.140) by the inverse operator, we finally arrive at

T+(ω, h)ϕ = ζϕ, (1.141)

where
T+(ω, h) = ( 1

2I − B(ω) − hA(ω))−1A(ω). (1.142)

However, it is not necessary to take h pure imaginary. If h1 is not a characteristic number of the
compact operator T+(ω, i), then the operator 1

2I − B(ω) − (i + h1)A is also invertible, so we can
find a suitable real h. We omit the analysis of the resulting operator.

Now let us consider Problem II. Let ω be exceptional with respect to the problem D+. The
operator T−(ω) (see (1.52)) exists as before, but now we cannot obtain the representation (1.51)
for it. We derive a different representation. Without loss of generality we assume that the domain
G+ contains the origin and denote by G+

r a ball of small radius r centered at the origin and
contained (together with its boundary Sr) in G+. For any given ω and a sufficiently small r, ω is
not exceptional with respect to the problem D+ in G+

r . Indeed, if u(x) is a solution of the system
(1.3) in this ball, then v(x) = u(rx) is the solution of the system L(∂x)v(x) + ρ(rω)2v(x) = 0 in
the unit ball {x : |x| < 1}, and it suffices to assume that ρ(rω)2 is less than the first eigenvalue of
−LD in this ball.

Now consider the problem

L(∂x, ω)u + ρω2u = F in G−
r , βTu− − u− = 0 on Sr, (1.143)

where G−
r is the complement of G+

r , F is compactly supported, T = T (∂x, ν(x)), where ν(x) in
the exterior normal unit vector to Sr, and the radiation conditions are imposed at infinity. For
definiteness, let ω > 0. Then for Imβ > 0 this problem can be solved uniquely (see Theorem 1.17).
Let G(x, y, ω) be Green’s function of this problem. It differs from E(x − y, ω) by a term g(x, y, ω)
which is infinitely smooth for x, y /∈ Sr.
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Let us define the potentials Ar(ω) and Br(ω) and the operators Ar(ω) and Br(ω) by formulas
of the form (1.29)–(1.32) with kernel G(x, y, ω) instead of E(x − y, ω). Instead of (1.46−) we now
have

(Br(ω) + 1
2I)u− = Ar(ω)Tu−. (1.144)

The analog of the homogeneous problem D+(ω) now is

L(∂x, ω)u = 0 in G+ \ G+
r ,

u+ = 0 on S, βTu− − u− = 0 on Sr,
(1.145)

and this problem does not have nontrivial solutions, which is checked with the use of Green’s
formula. Hence the operator on the left-hand side in (1.144) is invertible (cf. Subsection 1.6), and
for T−(ω) we obtain the representation

T−(ω) = ( 1
2I + Br(ω))−1Ar(ω) (1.146)

which allows us to obtain the same results as for the values of ω not exceptional with respect to
the problem D+.

Concerning Problem IV, we only make the following remark. The operator (1.104) can be con-
sidered under the condition of invertibility of A(ω), i.e., under the only assumption that ω is not
exceptional with respect to the problem D+. Under this assumption, we can reduce Problem IV to
the equation

Θ(ω)ϕ = zϕ, (1.147)

where ϕ = u− − u+ and
Θ(ω) = A−1(ω)(1

4I − B2(ω)). (1.148)

This is an elliptic operator of order 1 which has the inverse (1.61) if ω is not exceptional with
respect to the problem N+.

2. DOMAINS WITH LIPSCHITZ BOUNDARY
2.1. Coordinate Cylinders. Nontangential Convergence. Function Spaces

Let us recall that a surface S is called Lipschitz if in some neighborhood Z(x0) of every point
x0 ∈ S it can be identified (after a suitable rotation of the coordinate system in R3) with the graph
of a function x3 = X(x′) = X(x1, x2) satisfying the Lipschitz condition

|X(x′) − X(y′)| 6 C|x′ − y′|, (2.1)

where C is a Lipschitz constant independent of x′, y′. It is convenient to assume that the neighbor-
hood Z(x0) is a cylinder

Z = Z(x0) = {x ∈ R3 : |x′ − x′
0| < r, |x3 − x0,3| < s} (2.2)

and that (2.1) holds for |x′ − x′
0| < r. Assume additionally that 2Cr < s; then, in particular, the

graph intersects only the lateral surface of the cylinder. Assume also that the parts of the neigh-
borhood (2.2) lying below and above the graph of the function X are subsets of G±, respectively.
We include all the conditions above in the notion of a coordinate cylindrical neighborhood Z(x0).
A finite union of such cylinders with fixed r and s covers S. Let κZ(x0) denote the image of the
neighborhood (2.2) under the dilation with center x0 and coefficient κ. It is convenient to assume
that 2Z(x0) remains a coordinate cylindrical neighborhood of x0.

The functions satisfying the Lipschitz condition are differentiable almost everywhere (e.g., see [30,
Chapter 8]) and have bounded gradients; therefore the Lebesgue measure in R3 induces a Lebesgue
measure on S with the area element dSx = (1+ |∇X(x′)|2)1/2dx′ in the local coordinates. The unit
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exterior normal vector ν(x) is defined almost everywhere on S; we can assume that for x ∈ Z(x0)∩S
it forms an acute angle with the axis of Z(x0), which is not greater than a fixed angle α < π/2.

Let us introduce the sets

Γ±(x) = {y ∈ G± : |x − y| < βr(y, S)} (2.3)

for points x ∈ S, where r(y, S) is the distance from y to S and β is a sufficiently large fixed number.
We can assume that for all x ∈ S ∩ Z(x0) two finite circular cones of fixed size with vertex at x
and axes parallel to the axis of Z(x0) are contained in Γ±(x).

The boundary conditions of Problems I–IV preserve their sense (almost everywhere) if we now
understand u+(x) and u−(x) as the limit values of u(y) as y → x in Γ+(x) or Γ−(x), respectively, for
almost all x ∈ S. Such convergence is called nontangential. The derivatives ∂νu+(x) and ∂νu−(x)
are understood as the limits ∂u(y)/∂ν(x) as y → x in Γ±(x) for almost all x ∈ S. Here ν(x)
can be replaced by ν(y) with y = Λ±

j (x) being the image of the point x ∈ S under a Lipschitz
diffeomorphism Λ±

j : S → S±
j of the surface S onto an approximating closed infinitely smooth surface

S±
j ⊂ G± and ν(y) = ν±

j (y) being the unit exterior normal vector to S±
j at y (here we take into

account a lemma, e.g., from [33, p. 581]).
As we have already noted, the Sobolev spaces Ht(S) are now intrinsically defined only for |t| 6 1.

We shall use only the spaces H0(S) and H1(S) and the spaces Ht(G+) and Ht
loc(G

−) for 0 6 t 6 2.
Note that the trace operator on the Lipschitz surface S is a bounded operator from Ht(G+) or
Ht

loc(G
−) into Ht−1/2(S) only for 1/2 < t < 3/2 in the general case (e.g., see [18, 12]), but it is

possible to consider the critical values t = 1/2 and t = 3/2 for solutions of some elliptic equations
including the Lamé system (see below). Also, the trace operator is bounded from Ht(G+) or Ht(G−)
into H1(S) for t > 3/2 (e.g., see [12]).

For a vector-valued function w(x) defined in G+ or G−, we define the nontangential maximal
functions

w±
∗ (x) = sup

y∈Γ±(x)

|w(y)| (x ∈ S). (2.4)

Here instead of (2.3) a regular family of nontangential cones can also be used (e.g., see [32, 33]).
Let us now introduce four function spaces (cf. [31, 4]).
The space V +(ω) consists of all solutions u(x) of system (1.3) in G+ that are infinitely smooth

in G+ and have nontangential limits almost everywhere on S with u+
∗ ∈ L2(S). We can use the

L2-norm ‖u+
∗ ‖ as the norm in V +(ω), because if it is equal to 0, then u(x) = 0 in a boundary strip

and, therefore, in all of G+.
The space V −(ω) consists of all solutions of system (1.3) in G− that are infinitely smooth in

G−, have nontangential limits almost everywhere on S with u−
∗ ∈ L2(S) and satisfy the radiation

conditions. We equip V −(ω) with the norm ‖u−
∗ ‖.

The space W+(ω) consists of all solutions of system (1.3) in G+ that are infinitely smooth
in G+, have nontangential limits for u and ∇u almost everywhere on S, and have a finite norm
‖u+

∗ ‖ + ‖∇u+
∗ ‖ in L2(S).

Here and below ∇u is the matrix of first partial derivatives of the components of the vector u,
and ‖∇u‖2 is the sum of the squares of the norms of the entries of this matrix.

Finally, the space W−(ω) consists of all solutions of system (1.3) in G− that are infinitely
smooth in G−, have nontangential limits for u and ∇u almost everywhere on S, have a finite norm
‖u−

∗ ‖ + ‖∇u−
∗ ‖ in L2(S), and satisfy the radiation conditions.

The spaces of this type are convenient in potential theory for Lipschitz domains. In particular,
these spaces (with ω = 0) are essentially used in [10]. For us, their relations to the Sobolev spaces
in G± are important.

The general results of [11] for homogeneous elliptic systems imply that a solution u(x) of sys-
tem (1.3) with ω = 0 in a domain G+ with connected boundary belongs to V +(0) if and only if∫

G+
r(x, S)|∇u(x)|2dx < ∞. (2.5)
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We shall need the following theorem, close to some known results (cf. [10, p. 796]).

Theorem 2.1. A solution u(x) of system (1.3) belongs to V +(ω) if and only if it belongs
to H1/2(G+).

Proof. First we check this statement for ω = 0 following [18], where a similar result is derived
for the Laplace equation from the results of [9]; then we extend the theorem to all ω in the upper
half-plane.

It was proved in [18] without the assumption of harmonicity that condition (2.5) implies the
inclusion u(x) ∈ H1/2(G+). Thus, in the case ω = 0 it remains only to check for solutions of the
Lamé system that u ∈ H1/2(G+) implies (2.5). To prove this (see (2.8) below), we use the mean
value theorem for the Lamé system for ω = 0 (cf. [22, Chapter 14, §1]). This theorem says that

u(x) =
1

4πr2

∫
|y−x|=r

(C1E + C2Λ(y − x))u(y) dSy, (2.6)

where C1 and C2 are some constants, E is the 3 × 3 identity matrix, and Λ(y) is the matrix with
entries yjyk/|y|2. Multiplying (2.6) by r2, integrating along [0, R], and dividing by R3/3, we obtain

u(x) =
1

4
3πR3

∫
|y−x|6R

(C1E + C2Λ(y − x))u(y) dy. (2.7)

Since the Lamé system has constant coefficients, the derivatives of u(x) also satisfy it, and therefore

∂lu(x) =
1

4
3πR3

∫
|y−x|6R

∂yl
((C1E + C2Λ(y − x))(u(y) − u(x))) dy

− 1
4
3πR3

∫
|y−x|6R

C2∂yl
(Λ(y − x))(u(y) − u(x)) dy.

Applying the divergence theorem to the second integral, we obtain

|∂lu(x)| 6 C3R
−3

( ∫
|y−x|=R

|u(y) − u(x)| dS +
∫
|y−x|6R

|u(y) − u(x)|
|y − x| dy

)
.

Here we replace R by r, multiply the equation by r3, and integrate both sides again from 0 to R, es-
timating beforehand the triple integral by its maximum value, the integral over the ball of radius R.
Dividing by R4, we obtain

|∂lu(x)| 6 C4

(
R−4

∫
|y−x|6R

|u(y) − u(x)| dy + R−3

∫
|y−x|6R

|u(y) − u(x)|
|y − x| dy

)

6 C5R
−2

∫
|y−x|6R

|u(y) − u(x)|
|y − x|2 dy.

Applying the Schwarz inequality, we get

R |∂lu(x)|2 6 C6

∫
|y−x|6R

|u(y) − u(x)|2
|y − x|4 dy.

Let us replace R by r(x, S)/2; integrating with respect to x, we obviously obtain the desired
inequality ∫

G+
r(x, S)|∇u(x)|2 dx 6 C7

∫∫
G+×G+

|u(y) − u(x)|2
|y − x|4 dx dy. (2.8)
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Thus, we can now use Theorem 2.1 for ω = 0. Let ω be arbitrary, and let u(x) be a solution of
(1.3) from V +(ω). Then it belongs to L2 in a boundary strip and, therefore, in G+. Consider the
volume potential

U(x) =
∫

G+
E(x − y)F (y) dx, where F = ρω2u. (2.9)

It is easy to see, using the Schwarz inequality, that U is a bounded function; it is also known that
it belongs to H2(R3) and therefore to H2(G+). The sum v = u + U solves system (1.3) for ω = 0
and belongs to V +(0). Thus v ∈ H1/2(G+) and, as a result, u(x) ∈ H1/2(G+).

Now let u(x) be a solution of (1.3) from H1/2(G+). Then v = u+U solves system (1.3) for ω = 0
and belongs to H1/2(G+). Thus v ∈ V +(0), and we conclude that u ∈ V +(ω).

The same result holds for the exterior domain:

Corollary 2.2. u ∈ V −(ω) if and only if u is a solution of (1.3) from H
1/2
loc (G−) satisfying the

radiation conditions.

Indeed, it suffices to cover a boundary strip in G− by a finite union of suitable bounded Lipschitz
domains Gj adherent to S with connected boundaries and apply Theorem 2.1 to each of them.

More precisely, the implication u ∈ H
1/2
loc (G−) =⇒ u ∈ V −(ω) is obtained without difficulties.

Let us describe a possible way of construction of domains Gj to obtain the converse implica-
tion ⇐= . We fix a coordinate cylinder Z(x0) and construct a Lipschitz domain G0 ⊂ Z(x0)
with connected boundary S0 consisting of the graphs of two functions, xn = X(x′) (see (2.1)) and
xn = Y (x′), where

X(x′) < Y (x′) < X(x′) + s/4 for |x′ − x′
0| < r/2

and
X(x′) = Y (x′) for |x′ − x′

0| > r/2.

Here Y (x′) = X(x′)+ z(x′), where z(x′) is, say, an appropriate C∞ function. Instead of Γ−(x) (see
(2.3)), we will temporarily write Γ−

β (x, S). Similarly, we set

Γ+
γ (x, S0) = {y ∈ G0 : |x − y| < γr(y, S0)}.

We intend to verify that (for sufficiently large γ) there exist β > γ independent of x′, |x′−x′
0| < r/2,

such that
Γ+

γ ((x′, Y (x′)), S0) ⊂ Γ−
β ((x′, X(x′)), S). (2.10)

¿From this we can conclude that if the function u(x) belongs to V −(ω) in G−, then it belongs to
V +(ω) in G0 and, by Theorem 2.1, to H1/2(G0).

To obtain the inclusion (2.10), we consider the set

Kγ(x, S) = {y ∈ G0 : |y′ − x′| 6 γr(y, S)}.

For sufficiently large β,
Kγ(x′, S) ⊂ Γ−

β ((x′, X(x′)), S).

Indeed, let ε ∈ (0, 1) be so small (and γ so large) that the cone

Lε(x) = {y ∈ G− : |y′ − x′| < ε|y − x|, xn < yn < xn + s/4}

lies in Γ−
γ (x, S) for all x, |x′−x′

0| < r/2. Set β = γ/ε. Of course, the cone is contained in Γ−
β (x, S).

If y ∈ Kγ(x′, S), then either y ∈ Lε(x) ⊂ Γ−
β (x, S) or y /∈ Lε(x); in the latter case

|y − x|
β

6 |y′ − x′|
βε

=
|y′ − x′|

γ
6 r(y, S),
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so that again y ∈ Γ−
β (x, S).

It remains to verify that
Γγ((x′, Y (x′)), S0) ⊂ Kγ(x′, S). (2.11)

Assume that y belongs to the left-hand side of (2.11). Then

r(y, S) > r(y, S0) > |y − x|
γ

> |y′ − x′|
γ

which yields y ∈ Kγ(x′, S). ¤

Corollary 2.3. A solution u(x) of (1.3) in G+ belongs to W+(ω) if and only if it belongs to
H3/2(G+). Similarly, a solution u(x) of (1.3) in G− satisfying the radiation conditions belongs to
W−(ω) if and only if it belongs to H

3/2
loc (G−).

This is obtained by applying Theorem 2.1 and Corollary 2.2 to the first partial derivatives of
u(x).

2.2. Integral Operators

Proposition 2.4. For ω = 0:
1. The operators B and B′ are bounded in H0(S), B is also bounded in H1(S), and A is

bounded as an operator from H0(S) into H1(S).
2. The operator B is bounded from H0(S) into V ±(0) and from H1(S) into W±(0), and A is

a bounded operator from H0(S) into W±(0).
3. The operators 1

2I + B and 1
2I + B′ are invertible in H0(S); A is invertible as an operator

from H0(S) into H1(S); 1
2I + B is invertible in H1(S); 1

2I − B and 1
2I − B′ are Fredholm

operators in H0(S) with zero index.

Proof. Most of the facts stated in this Proposition can be found in [10] or follow from the
theorems on boundedness of singular integral operators on a Lipschitz surface [7]. Namely, the
boundedness of the operators B, B′: H0(S) → H0(S), A: H0(S) → H1(S), B: H0(S) → V ±(0), and
A: H0(S) → W±(0) follows from [7]. The invertibility of the operators 1

2I+B and 1
2I+B′ in H0(S)

and the fact that 1
2I − B and 1

2I − B′ are Fredholm in H0(S) with index zero were proved in the
course of study of the problems N±(0) in [10]. (More precisely, the results for 1

2I ± B follow from
those obtained in [10] for 1

2I ± B′.) In particular, it was proved there that the exterior problem
N−(0) is uniquely solvable in W−(0) for any Tu− ∈ H0(S).

The Dirichlet problems for ω = 0 were studied in [10] with the use of some other operators of
the type of B and B′. The unique solvability of the Dirichlet problems was proved; the solution
belongs to V ±(0) if u± ∈ H0(S) and to W±(0) if u± ∈ H1(S).

Using these facts, we shall now easily check the remaining statements of our Proposition. Let us
use formula (1.46−) for solutions from W−(0) (the discussion of this formula is postponed until the
next subsection). It implies that B is a bounded operator in H1(S). Also, it implies that operator A
annihilates only the zero function in H0(S) (as the same is true for 1

2I+B). Further, due to formula
(1.34−), which remains valid in Lipschitz domains (as well as (1.33±), (1.34±), and (1.37±)), it is
obvious that the formula

u = A(1
2I + B′)−1Tu−

gives the solution of the exterior problem N−(0). Thus, we have

u− = A(1
2I + B′)−1Tu−, (2.12)

which shows that the range of A is the whole space H1(S). Therefore, A maps H0(S) continuously
and bijectively onto H1(S), and by Banach’s theorem A has a bounded inverse A−1: H1(S) →
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H0(S). By (1.46−), the range of 1
2I + B acting in H1(S) is also H1(S). Thus, 1

2I + B is also
invertible in H1(S). In addition, comparing formulas (1.46−) and (2.12), we obtain (1.99) for
ω = 0.

Finally, from two representations of solutions of the interior Dirichlet problem with u+ ∈ H1(S),

AA−1u+ = B(1
2I + B)−1u+,

it follows that B acts from H1(S) into W+(0). The fact that it also acts from H1(S) into W−(0) can
be checked by covering an exterior boundary strip by a finite union of simply connected bounded
Lipschitz domains adherent to S and using a partition of unity on S.

Theorem 2.5. For all ω, ω1, and ω2:
1. The operators B(ω) and B′(ω) are bounded in H0(S), B(ω) is also bounded in H1(S), and

A(ω) is bounded as an operator from H0(S) into H1(S).
2. The operator B(ω) is bounded from H0(S) into V ±(ω) and from H1(S) into W±(ω); A(ω)

is a bounded operator from H0(S) into W±(ω).
3. The differences B(ω1)−B(ω2), B′(ω1)−B′(ω2), and A(ω1)−A(ω2) are compact operators

from H0(S) into H1(S); moreover, operators B(ω1) − B(ω2) are compact in H1(S).

Proof. All the statements in parts 1 and 2 referring to ω = 0 are contained in Proposition 2.4.
The theorem on the boundedness of singular integral operators from [7] can actually be applied for
all ω: it suffices to note that the orders of singularities of the kernels of the differences mentioned
in part 3 are at least by two less than those of the singularities of the kernels of B(ωj), B′(ωj), and
A(ωj), respectively. This also implies the remaining statements on boundedness and compactness.

We also mention here that, in general, the L2-integrability on S of the maximal function of
a surface potential with a weak singularity follows from the boundedness of the corresponding
integral operator of potential type in L2(S). For example, if x, z ∈ S and y ∈ Γ±(x) (see (2.3)),
then |y − x| + |y − z| > |x − z|; therefore, C1|y − z| > |x − z| and∫

S

|f(z)| dSz

|y − z| 6 C2

∫
S

|f(z)| dSz

|x − z| ,

where the integral in the right-hand side is a bounded integral operator in L2(S).

2.3. Integral Formulas

Theorem 2.6. Green’s formula (1.39) is valid for u ∈ H2(G+) and v ∈ H1(G−). Formula
(1.42) is valid for u ∈ W+(ω) and v ∈ H1(G+), and formula (1.43) is valid for u ∈ W+(ω1) and
v ∈ W+(ω2) without the assumption that the boundary is connected. It follows that the integral
representations (1.44) and (1.45) for solutions from W+(ω) and W−(ω) are also valid, as well as
the relations (1.46±) on S for these solutions.

Proof. The first statement is obtained as in [26], Chapter 3, §1, and [15, Section 1.5.3]. To
obtain formula (1.42), we use the approximation of G by subdomains Gj with smooth boundaries
Sj , which was described in the lemma in [33]. The function v is approximated in H1(G+) by
functions vk from C1(G

+
) or even from C∞(G

+
), see [15]. Passing to the limit as j → ∞ is allowed

due to Lebesgue’s dominated convergence theorem and gives formula (1.42) for u and vk. Now
we can take the limit as k → ∞, using the fact that in the case of a Lipschitz domain the trace
operator on S is a bounded operator from H1(G+) even to H1/2(S) (see [12]). Formula (1.43) is
now obtained from (1.42). Cf. [4].

2.4. The First and the Second Boundary Value Problems. Uniqueness and Regularity

The problems D±(ω) and N±(ω) are posed as in Subsection 1.5, where we take in (1.62±) either
f ∈ H0(S) (and then the solution of D±(ω) must belong to V ±(ω)), or f ∈ H1(S) (and then the
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solution must belong to W±(ω)). In (1.63±), g ∈ H0(S), and the solution of N±(ω) must belong
to W±(ω). We have mentioned these problems for ω = 0 in Subsection 2.2.

The uniqueness for the exterior problems in W−(ω) for all ω and the interior problems in W+(ω)
for nonreal ω can be verified using Green’s formulas.

Theorem 2.7. Let u be a solution of the problem D+(ω) or D−(ω) from V ±(ω) with u± ∈
H1(S). Then u ∈ W±(ω), respectively.

Proof. For the interior problem, let us consider the volume potential U defined by (2.9). Since
its density belongs to L2(G+), we have U ∈ H2(R3) and hence U+ ∈ H1(S). Let us set v = u + U .
Then v is a solution of system (1.3) with ω = 0 and Dirichlet data from H1(S). Hence, by [10],
v ∈ W+(0). Using Corollary 2.3, we conclude that v ∈ H3/2(G+), u ∈ H3/2(G+), and u ∈ W+(ω).

A slightly more complicated reasoning is required in the exterior case. Let θ(x) be an infinitely
smooth function on G

−
that is equal to 1 near S and to 0 for |x| > R, where the number R is

sufficiently large. Then (1 − θ)u ∈ C∞(G
−

). Let us take the density F of the potential (2.9) to be
ρω2u + L(∂x)((1 − θ)u). It is easy to see that this function belongs to L2(G−) and has a compact
support. Hence U ∈ H2(R3) and U− ∈ H1(S). Let us set v = θu + U . Then L(∂x)v = 0 in G−,
v ∈ V −(0), v− ∈ H1(S), and thus v ∈ W−(0), v ∈ H

3/2
loc (G−) (by Corollary 2.3), and it follows

that u ∈ H
3/2
loc (G−), u ∈ W−(ω).

Below we call a number ω exceptional with respect to the problem D+ if the homogeneous
problem D+(ω) has a nontrivial solution in V +(ω), or, equivalently, in W+(ω). We also call a
number ω exceptional with respect to the problem N+ if the homogeneous problem N+(ω) has a
nontrivial solution in W+(ω). We shall relate the exceptional values of ω with the eigenvalues of
the variational operators −LD and −LN in Subsection 2.7.

2.5. The Invertibility of the Operators A(ω), 1
2I ± B′(ω), and 1

2I ± B(ω)

Proposition 2.8. For ω′′ > 0, the operators A(ω):H0(S) → H1(S), 1
2I±B(ω), and 1

2I±B′(ω)
in H0(S), and 1

2I ± B(ω) in H1(ω) are invertible.

Proof. Statement 3 of Proposition 2.4 and Statement 3 of Theorem 2.5 show that A(ω):H0(S)→
H1(S), 1

2I ± B(ω) and 1
2I ± B′(ω) in H0(S) are Fredholm operators of index zero for all ω. Let

ω′′ > 0. Let us prove that A(ω) and 1
2I ± B′(ω) annihilate only the function ϕ = 0 in H0(S).

Assume that A(ω)ϕ = 0 and consider u = A(ω)ϕ. Then u ∈ W±(ω), u± = 0, and hence u = 0
in G± and ϕ = ∂νu− − ∂νu+ = 0. Here we have used (1.34).

Assume that (1
2I +B′(ω))ϕ = 0 and again consider u = A(ω)ϕ. Then Tu− = 0, and hence u = 0

in G−, 0 = u− = u+, so that again u = 0 in G± and ϕ = 0. The case ( 1
2I − B′(ω))ϕ = 0 can be

considered in a similar way.
Thus A(ω) and 1

2I + B′(ω) are invertible. It follows that 1
2I + B∗(ω) and 1

2I ± B(ω) are also
invertible in H0(S).

To prove that 1
2I ± B(ω) are invertible in H1(S), we can use formulas (1.46±) and Banach’s

theorem as in the proof of Proposition 2.4. Instead, it is also possible to use formula

(1
2I ± B(ω))−1 = A(ω)(1

2I ± B′(ω))−1A−1(ω) (2.13±)

that follows from Proposition 2.10 below.

Corollary 2.9. For any ω, let
(1
2I ± B(ω))ϕ = ψ, (2.14)

where ϕ ∈ H0(S) and ψ ∈ H1(S). Then ϕ ∈ H1(S). In particular, the operator 1
2I ±B(ω) has the

same null space in H0(S) and H1(S).
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To prove the corollary, it suffices to act on both sides of (2.14) by, e.g., (1
2I ± B(i))−1 and then

apply Statement 3 of Theorem 2.5.
Now let us state the result which contains the analogs of Propositions 1.2, 1.5, and 1.6 for a

Lipschitz domain. Here ω is real.

Proposition 2.10. For all ω, formula (1.99) holds on functions from H0(S), and formula
(1.38) holds on functions ψ from H1(S).

Proof. The proof is similar to that in Subsection 1.7. First, let ω′ > 0. For functions u ∈ W+(G)
we obtain from two representations of Tu+ in terms of u+ the relation

A−1(ω)B(ω)ϕ = B′(ω)A−1(ω)ϕ,

where ϕ = u+. We set A−1(ω)ϕ = ψ and multiply both sides by A(ω) from the left. (Instead of the
relation between u+ and Tu+ we could use the relation between u− and Tu−.) It remains to pass
to the limit as ω′ → 0.

Formula (1.38) is obtained similarly: see the proof of Proposition 1.9.

Theorem 2.11. In the space H0(S),

KerA(ω) = {Tu+ : u ∈ W+(ω), u+ = 0} = Ker( 1
2I + B′(ω)). (2.15)

Furthermore, Ker(1
2I − B(ω)) in H0(S) is contained in H1(S) and is expressed by the formula

Ker(1
2I − B(ω)) = {u : u ∈ W+(ω), Tu+ = 0}. (2.16)

The proofs essentially repeat the proofs of Propositions 1.2, 1.5, and 1.6. For example, let us
check (2.16). If u ∈ W+(ω) and Tu+ = 0, then from (1.46+) it follows that (1

2I − B(ω))u+ = 0.
Conversely, let (1

2I − B(ω))ϕ = 0, ϕ ∈ H0(S). Then ϕ ∈ H1(S) by Corollary 2.9. Set u = B(ω)ϕ.
Then u ∈ W±(ω) and u− = 0 by (1.37−), u = 0 in G−, and 0 = Tu− = Tu+ by (1.38). Using
(1.37±), we see that u+ = ϕ. ¤

As ω is here actually real, it is clear that all the null spaces coincide with their complex conjugate
subspaces.

Theorem 2.12.
1. For any ω the following statements are equivalent :

(a) ω is not exceptional with respect to the problem D+;
(b) the operator A(ω):H0(S) → H1(S) is invertible;
(c) the operator 1

2I + B′(ω):H0(S) → H0(S) is invertible;
(d) the operator 1

2I + B(ω):H0(S) → H0(S) is invertible;
(e) the operator 1

2I + B(ω):H1(S) → H1(S) is invertible.
2. For any ω the following statements are also equivalent :

(f) ω is not exceptional with respect to the problem N+;
(g) the operator 1

2I − B′(ω):H0(S) → H0(S) is invertible;
(h) the operator 1

2I − B(ω):H0(S) → H0(S) is invertible;
(i) the operator 1

2I − B(ω):H1(S) → H1(S) is invertible.

Proof. We use Proposition 2.4 and Theorem 2.5. Since A(ω) is a Fredholm operator from H0(S)
into H1(S) with zero index for all ω, the statement (a), i.e., the triviality of (2.15), is equivalent
to (b). Similarly, with the account of (2.15), (a) is equivalent to (c). The operators 1

2I + B(ω),
1
2I +B∗(ω) and (since B∗(ω) = B′(ω)) 1

2I +B′(ω) are invertible in H0(S) for the same values of ω.
In particular, (c) is equivalent to (d).
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Using Proposition 2.10, we see that (e) follows from (a) and (c): see (2.13+). Conversely, from
(e) it follows that Ker(1

2I + B(ω)) = {0} in H0(S) (see Corollary 2.9) and hence 1
2I + B(ω) is

invertible in H0(S). We see that (a)–(e) are equivalent.
Now (g) and (h) are obviously equivalent, and (h) is equivalent to (f) (since 1

2I−B(ω) is Fredholm
in H0(S) with index zero and its null space lies in H1(S); see (2.16)). From (i) we obtain (h) (as
(d) from (e)). It remains to derive (i) from (h) (avoiding the assumption that A−1(ω) exists). For
this we use the following: 1

2I − B(ω) is a bounded operator in H1(S), from (h) it follows that this
operator is one-to-one, and from Corollary 2.9 and (h) it follows that its image is H1(S). Thus
1
2I−B(ω) is invertible in H1(S) again by Banach’s theorem, and we see that (f)–(i) are equivalent.

2.6. Formulas for Solutions of Main Boundary Value Problems

Theorem 2.13. If ω is not exceptional with respect to the problem D+, then formulas (1.93)
and (1.96) hold with u+ ∈ H0(S) or u+ ∈ H1(S) and Tu− ∈ H0(S), respectively, and formulas
(1.94) and (1.95) hold with u± ∈ H1(S). If ω is not exceptional with respect to the problem N+, then
formula (1.97) holds with Tu+ ∈ H0(S) and formula (1.98) holds with u− ∈ H0(S) or u− ∈ H1(S).

For ω′′ > 0, some of these facts where already used in the proof of Proposition 2.10.
For exceptional values of ω we can use the formulas mentioned after (1.98). We leave out the

details.

Proposition 2.14. Let ω be not exceptional with respect to the problem D+. Then equalities
(1.104) hold. If, in addition, ω is not exceptional with respect to the problem N+, then equalities
(1.107) hold as well.

2.7. Exceptional Frequencies ω and Eigenvalues of LD and LN

The operators LD and LN should now be understood in the variational sense. To define −LD,
consider the sesquilinear form (cf. (1.39))

aD[u, v] =
∫

G+
E(u, v) dx on H1

0 (G+), (2.17)

where, as before, H1
0 (G+) is the closure of C∞

0 (G+) in H1(G+). The corresponding quadratic form
is positive definite due to the G̊arding inequality

ε‖u‖2
1,G+ 6

∫
G+

E(u, ū) dx (u ∈ H1
0 (G+)) (2.18)

(cf. (1.71)), which is still true in any Lipschitz (and even in any bounded) domain (cf. [27, Chap-
ter 1]). Thus H1

0 (G+) can be considered as a Hilbert space with the inner product (2.17). This
form is closed and densely defined in L2(G+), and it defines a selfadjoint operator AD with domain
D(AD) ⊂ H1

0 (G+) (see, e.g., [19, Chapter 6]). This operator has a bounded inverse BD defined by∫
G+

w · v dx = aD[BDw, v] (w ∈ H0(G+), v ∈ H1
0 (G+)), (2.19)

and the domain D(AD) of AD coincides with the range of BD. We now define −LD as AD.
The operator AN = I − LN is defined in the same manner by the sesquilinear form

aN [u, v] =
∫

G+
[E(u, v) + u · v] dx on H1(G+). (2.20)

The corresponding quadratic form is positive definite due to the analog of the G̊arding inequality

ε‖u‖2
1,G+ 6

∫
G+

E(u, ū) dx + ‖u‖2
0,G+ (u ∈ H1(G+)) (2.21)
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(cf. (1.76)), which works on Lipschitz domains (cf. [27, Chapter 1]), and the form (2.20) can be
considered as an inner product on H1(G+). This form is closed and densely defined in H0(G+), and
it defines a selfadjoint operator AN in H0(G+) with domain D(AN ) ⊂ H1(G+). It has a bounded
inverse BN such that∫

G+
w · v dx = aN [BNw, v] (w ∈ H0(G+), v ∈ H1(G+)). (2.22)

The spectra of selfadjoint operators AD and AN are real and discrete, since the operators BD

and BN are compact in view of the compactness of the embedding of H1(S) into H0(S).

Theorem 2.15. The set of values of ρω2 for which ω is exceptional with respect to the prob-
lem D+ coincides with the spectrum of −LD, and the null spaces KerA(±ω) coincide with the
corresponding eigenspace of −LD.

Similarly, the set of values of ρω2 for which ω is exceptional with respect to the problem N+

coincides with the spectrum of −LN , and the null spaces Ker[12I −B(±ω)] coincide with the corre-
sponding eigenspace of −LN .

The eigenfunctions of both operators belong to H3/2(G+) in any bounded Lipschitz domain G+.

Proof. Let u be any nontrivial solution of system (1.3) from W+(ω) with u+ = 0. Let us take
v ∈ H1

0 (G+) and apply Green’s first formula (1.42) to u and v. We obtain

ρω2

∫
G+

u · v dx =
∫

G+
E(u, v) dx. (2.23)

We see that BDu = (ρω2)−1u, i.e. −LDu = ρω2u.
Conversely, let u be an eigenfunction of −LD corresponding to an eigenvalue ρω2. Then u ∈

H1
0 (G+), and we have (2.23). This implies that LDu+ρω2u = 0 in G+ in the sense of distributions

and, therefore, in the usual sense. In particular, u(x) is a solution of the homogeneous problem
D+(ω) in H1/2(G+), and thus u ∈ V +(ω) (by Theorem 2.1), u ∈ W+(ω) (by Theorem 2.7), and,
finally, u ∈ H3/2(G+) (by Corollary 2.3).

Now let u(x) be any nontrivial solution of system (1.3) from W+(ω) with Tu+ = 0. Let us take
v ∈ H1(G+) and apply Green’s first formula (1.42) to u and v. We again obtain (2.23) and conclude
that u is an eigenfunction of −LN corresponding to the eigenvalue ρω2.

Conversely, let u be an eigenfunction of −LN corresponding to an eigenvalue ρω2. Then u ∈
H1(G+) and (2.23) is valid for all v ∈ H1(G+). Using a function v from C∞

0 (G+), we see that u
is a solution of (1.3) in G+ in the sense of distributions and, therefore, in the usual sense. Let us
introduce the volume potential

U1(x) =
∫

G+
E(x − y, i)ρ(ω2 + 1)u(y) dy. (2.24)

This function belongs to H2(G+) and satisfies the equation (L − ρ)U1 = ρ(ω2 + 1)u in G+, and
TU+

1 ∈ H1/2(S). Set u1 = u + U1. We have (L − ρ)u1 = 0 in G+ and u1 ∈ H1(G+), and also
(u1)+∗ ∈ L2(S) by Theorem 2.1. Furthermore, we have

∫
G+

(L − ρ)U1 · v dx = ρ(ω2 + 1)
∫

G+
u · v dx =

∫
G+

E(u, v) dx + ρ

∫
G+

u · v dx

by (2.23), and by Green’s formula (1.39),
∫

G+
(L − ρ)U1 · v dx = −ρ

∫
G+

U1 · v dx −
∫

G+
E(U1, v) dx +

∫
S

TU+
1 · vdS.
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Hence ∫
G+

E(u1, v) + ρ

∫
G+

u1v dx =
∫

S

TU+
1 · v dx

for any v ∈ H1(G+). Let us now define u2 as the only solution of (L − ρ)u2 = 0 in W+(i) (i.e., in
H3/2(G+)) with the boundary condition Tu+

2 = TU+
1 . With the same choice of v, we get

0 =
∫

G+
(L − ρ)u2 · v dx = −ρ

∫
G+

u2 · v dx −
∫

G+
E(u2, v) dx +

∫
S

TU+
1 · v dx.

Comparing the last relations, we see that∫
G+

E(u1 − u2, v) dx + ρ

∫
G+

(u1 − u2) · v dx = 0.

Setting v = u1 − u2, we conclude that u1 = u2. Now we see that u = u2 −U1 belongs to H3/2(G+)
and W+(ω) (by Corollary 2.3), and that Tu+ = 0 in the usual sense for this space.

For both variational problems the spectral asymptotics are the same as in the smooth case
(see [5]).

2.8. Reduction of Problems I–IV to Integral Equations on S for Nonexceptional ω

Here we can repeat word for word all the constructions of Subsection 1.4 with the following spec-
ification: the solutions of the boundary value problems are considered in W±(ω). All the operators
A(ω), T±(ω), T (ω) are bounded from H0(S) into H1(S).

2.9. Spectral Properties of Operator A(ω)

In this and the following subsections we shall show that somewhat coarser forms of the results
of Subsections 1.8–1.10 remain valid in the case of a Lipschitz surface S.

Theorem 2.16. Statements 1 and 3 of Theorem 1.11 remain true.

These statements are obtained exactly as in the case of a smooth S.
Instead of Statement 2 of Theorem 1.11, we can use only a weaker statement, namely a part of

the Statement 3 of Theorem 2.5: A(ω) − A(i) is a compact operator from H0(S) into H1(S), so
that A−1(i)(A(ω)−A(i)) is a compact operator in H0(S). However, this implies that on a Lipschitz
surface S the operator A(ω) may be considered as a weak perturbation of a selfadjoint negative
operator A(i) or A(ω1) with any pure imaginary ω1.

As in the case of a smooth S, for ω′ 6= 0 the only possible real eigenvalue of A(ω) is zero, the
corresponding root space is finite-dimensional and contains only eigenfunctions.

Theorem 1.12 is replaced by the following:

Theorem 2.17. For any ω the characteristic numbers zj(A(ω)) tend to −∞ and satisfy the
inequality

|zj(A(ω))| > Cj1/2, (2.25)

where C is a positive constant. If the surface S is almost smooth, then

zj(A(ω)) = −c(A)j1/2 + o(j1/2) (j → ∞), (2.26)

where the constants cj(A) are independent of ω.
If ω′ 6= 0, then Im zj/ Re zj → 0 as j → ∞. The signs of Im zj coincide with the sign of ω′.
For |ω′| < ω′′, Re zj are negative.

Estimate (2.25) follows from the fact that A(ω) is bounded as an operator from H0(S) into
H1(S) (see references in [2] or estimates of s-numbers in [3] and [14, Chapter II]). Asymptotics
(2.26) for an almost smooth S is obtained in [3]. The other statements follow from the fact that
A(ω) is a weak perturbation of A(i) (cf. [14], [1], and [2]), and from (1.113) and (1.118).
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Theorem 2.18. For Im ω 6= 0 the root functions of A(ω) are complete in H0(S). The root
functions corresponding to nonzero eigenvalues belong to H1(S),2and if 0 is not an eigenvalue,
then we also have the completeness in H1(S). The Fourier series of f ∈ H0(S) with respect to a
complete minimal system of the root functions admits the summability to f in H0(S) by the Abel–
Lidskĭı method of order 2 + ε with arbitrarily small ε, and if 0 is not an eigenvalue, then the same
is true in H1(S).

Here we once more use the fact that A(ω) is a weak perturbation of A(i) (cf. [14]). The description
of the Abel–Lidskĭı summability method and the corresponding theorem which we use can be found
in [23], [1], [2], and [4]. The theorem applies to a weak perturbation of a selfadjoint operator and
describes a method of reconstructing of any function from its Fourier series with respect to the root
functions of this operator.

2.10. Spectral Properties of Operators T±(ω) and T (ω)

As in Subsections 1.9–1.10, here we assume that ω is not exceptional with respect to the problem
N+ when considering the operator T+(ω), and with respect to the problem D+ when considering
the operator T−(ω).

Theorem 2.19. Statements 1 and 2 of Theorem 1.15 remain true.

Instead of Statement 3 of Theorem 1.15 we have the compactness of operators T±(ω) − T±(i) :
H0(S) → H1(S), from which it follows that the operators (T±(i))−1(T±(ω)− T±(i)) are compact
in H0(S).

As in the case of a smooth S, T+(ω) can have the eigenvalue zero simultaneously with A(ω),
and then KerT+(ω) = Ker A(ω) (and ω is real). The operator T−(ω) cannot have the eigenvalue
zero.

Theorem 2.20. For any ω the real parts of the characteristic numbers zj(T±(ω)) of the oper-
ators T±(ω) tend to −∞, and

|zj(T±(ω))| > Cj1/2 (2.27)
with positive constant C. If the surface S is almost smooth, then

zj(T±(ω)) = −c(T±)j1/2 + o(j1/2) (j → ∞), (2.28)

where positive coefficients c(T±) are independent of ω.
If the operators are nonselfadjoint, then Im zj/ Re zj → 0 as j → ∞. The signs of Im zj coincide

with the sign of ω′.
For |ω′| < ω′′, the real parts of zj are negative.

Theorem 2.21. If the operator T+(ω) or T−(ω) is nonselfadjoint, then its root functions belong
to H1(S) and are complete in H0(S) and H1(S). The Fourier series of a function f ∈ Hj(S) with
respect to the root functions admits the summability by the Abel–Lidskĭı method of order 2 + ε with
arbitrarily small ε > 0 to f in Hj(S) (j = 0, 1).

If T+(ω) is selfadjoint, its eigenfunctions corresponding to nonzero eigenvalues belong to H1(S).
If T−(ω) is selfadjoint, all its eigenfunctions belong to H1(S).

The proofs are similar to those given in Subsection 2.9. The only difference is that in order to
obtain formula (2.28) in the case of an almost smooth S we use two representations for T±(ω)
which follow from (1.99):

T±(ω) = (1
2I ∓ B(ω))−1A(ω) = A(ω)(1

2I ∓ B′(ω))−1;

this is essential for the application of the result of [3].
Finally, we can describe the spectral properties of T (ω) under the assumption that ω is not

exceptional for the problems D+ and N+. However, these properties are similar to those of T−(ω);
therefore we do not repeat the formulations.
2Cf. [4].
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2.11. Problems I–IV for Exceptional ω

The ways of reduction of these problems to equations on nonsmooth S are similar to those
described in the case of a smooth S in Subsection 1.11, and the properties of the corresponding
operators are similar to those described in two previous subsections.
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